PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water tunnel visualisation and numerical analysis of flow around TS-11 Iskra wing with flow control surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents investigation of flow around wing of TS-11 Iskra airplane. The flow visualization around 3D printed model of wing with flow control surfaces was performed in a water tunnel. Two configurations were investigated: first with a flap and second with an aileron. The flow visualisation was performed with a use of a dye. The geometry of model was prepared with use Computer Aided Design (CAD) software basing on scans of real object and technical documentation. The model was built with use of additive manufacturing technology. Movement of the flow control surfaces was remotely controlled with servomechanisms incorporated in channels inside the model. In order to perform qualitative validation of the results the investigated flow was simulated with use of CFD commercial software. The article presents visualisation results of flow around wing section of TS-11 Iskra airplane and water tunnel model preparation. In order to perform qualitative validation of the results the investigated flow was simulated with use of CFD commercial software. The goal of the research was to investigate the complex flow field in the vicinity of flow control surfaces and provide aerodynamic characteristics at various deployment angles via numerical simulations. The results can be used for verification of water tunnel testing procedures and training.
Słowa kluczowe
Twórcy
  • Polish Air Force Academy, Aeronautics Faculty Dywizjonu 303 Street 25, 08-521 Deblin, Poland tel.: + 48 261 517 427
autor
  • Polish Air Force Academy, Aeronautics Faculty Dywizjonu 303 Street 25, 08-521 Deblin, Poland tel.: + 48 261 517 427
autor
  • Polish Air Force Academy, Aeronautics Faculty Dywizjonu 303 Street 25, 08-521 Deblin, Poland tel.: + 48 261 517 427
autor
  • Polish Air Force Academy, Aeronautics Faculty Dywizjonu 303 Street 25, 08-521 Deblin, Poland tel.: + 48 261 517 427
  • Institute of Aviation, Aerodynamics Department Krakowska Av. 110/114, 02-256 Warsaw, Poland tel.: +48 22 8460011 ext. 312
  • Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 261 851 300
Bibliografia
  • [1] A hydrodynamic tunnel (prototype). Technical documentation TUN/2011, Project 122, ELBIT – An innovations-implementation company, 2011.
  • [2] Erickson, G.,E., Peake, D. J., Del Frate, J., Skow, A. M., Malcolm, G. N., Water Facilities in Retrospect and Prospect – an Illuminating Tool for Vehicle Design, Tech. Memo. 89409, National Aeronautics and Space Administration, 1987.
  • [3] Eckert, M., The Dawn of Fluid Dynamics: A Discipline Between Science and Technology, John Wiley & Sons, Weinheim 2006.
  • [4] Stryczniewicz, W., Algorytm do wyznaczania wektorowego pola prędkości metodą anemometrii obrazowej, Problemy Mechatroniki, 9, pp. 41-54, 2012.
  • [5] Merlo, N., Boushaki, T., Chauveau, C., De Persis, S., Pillier, L., Sarh, B., Gökalp, I., Experimental Study of Oxygen Enrichment Effects on Turbulent Non-premixed Swirling Flames, Energy Fuels, Vol. 27, pp. 6191-6197, 2013.
  • [6] TSI, http://tsi.com.
  • [7] Szkudlarz, P., Analiza charakterystyk aerodynamicznych i osiągów samolotu TS-11 Iskra w oparciu o obliczenia inżynieryjne i wnioski z eksploatacji w powietrzu, WSOSP Dęblin, pp. 12-14, 2003.
  • [8] http://m-selig.ae.illinois.edu, dostępne w dniu 28.11.2016.
  • [9] Kaczmarek, R., Budowa i Eksploatacja samolotu TS-11 Iskra przez pilota, Wyższa Oficerska Szkoła Lotnicza, pp. 43-45, , Dęblin.
  • [10] Tennekes, H., Lumley, J. L., A first course in turbulence, MIT Press Design Department, pp. 59-74, USA 1972.
  • [11] Barlow, J. B., Rae, W. H. Jr, Pope, A., Low-Speed Wind Tunnel Testing, John Wiley & Sons Inc., pp. 40, 1999.
  • [12] Anderson, J. D. Jr, Fundamentals of aerodynamics, fifth editions in SI Units, McGraw-Hill, pp. 75-89, 2011.
  • [13] Tucker, P. G., Advanced computational fluid and aerodynamics, Cambridge University Press, USA, pp. 386-403, 2016.
  • [14] Filipiak, D., Szczepaniak, R., Zaorski, T., Bąbel, R., Stabryn, S., Stryczniewicz, W., Flow visualization over an airfoil with flight control surfaces in a water tunnel, Transactions of the Institute of Aviation, No. 1 (246), pp. 63-78, Warsaw 2017.
  • [15] Rott, N., Note on the history of the Reynolds Number, Annul Review of Fluid Mechanics, 22, pp. 1-11, 1990.
  • [16] Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philosophical Transactions of the Royal Society of London A, 186, pp. 123-164, 1895.
  • [17] Smędra, K., Świerkot, R., Kubryński, K., Low speed wind tunnel test of the jet trainer model at high angles of attack, Journal of KONES Powertrain and Transport, Vol. 23, No. 4, pp. 471-478, 2016.
  • [18] Sibilski, K., Pietrucha, J., Zlocka, M., Comparative Evaluation of Power Requirements for Fixed, Rotary, and Flapping Wings Micro Air Vehicles, AIAA Atmospheric Flight Mechanics Conference and Exhibit, 20-23 August Hilton Head, South Carolina 2007.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca40e2de-4947-4c21-867b-2873a0bb8d59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.