PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using ANSYS and SORCER Modeling Framework for the Optimization of the Design of a Flapping Wing Bionic Object

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Growing modeling software capabilities together with available computational resources enable the modeling of more and more complex multi-physical problems. At the same time, the preparation of such simulation requires a collaboration of both engineers and software. Multidisciplinary Design Optimization (MDO) platforms are used to integrate simulation tools and expert knowledge that represents various engineering disciplines. The presented study demonstrates an effective use of a specialized CFD program and an MDO platform the SORCER Modeling Framework (SMF) for the automation and optimization of the design of a flapping wing bionic object. The SMF realizes an optimization loop by using independent blocks prepared using ANSYS Workbench. An unsteady flow generated by the prescribed flapping wing trajectory is simulated. A number of geometrical and physical parameters is defined in the SMF model and then transferred to the slave blocks of the CFD program. An automated ANSYS workflow generates a geometry of computational domain, realizes it's proper meshing, initializes and performs the simulation, and finally passes the results to the SMF. The proposed system is an example of usage of the SMF that demonstrates the connection of specialized knowledge and a complex CFD simulation with simple and efficient control.
Słowa kluczowe
Rocznik
Strony
21--36
Opis fizyczny
Bibliogr. 16 poz., il., tab., wykr.
Twórcy
  • Department of Aerodynamics, Warsaw University of Technology
  • Department of Aerodynamics, Warsaw University of Technology
autor
  • Institute of Automatic Control and Robotics, Warsaw University of Technology
autor
  • Sorcersoft.com, Warsaw School of Economics
autor
  • Department of Aerodynamics, Warsaw University of Technology
Bibliografia
  • 1. Dickinson M., Lehmann F., Sane S.,: Wing Rotation and the Aerodynamic Basis of Insect Flight, Science 284, 1954-1960, 1999.
  • 2. http://sorcersoft.org/project/site/, accessed: 15.11.2015.
  • 3. Johnson, S.G.,: The NLopt nonlinear-optimization package, 2014.
  • 4. Kolonay R.M.,: Physics-Based Distributed Collaborative Design for Aerospace Vehicle Development and Technology Assessment, 20th ISPE International Conference on Concurrent Engineering: Proceedings, 198-215, 2013.
  • 5. Korotko J., Piechna J.,: Numerical analysis of four-winged insect flight, Biomechanics August 2010, 25-28.
  • 6. Kraft, D. and Schnepper, K.,:SLSQP - A Nonlinear Programming Method with Quadratic Programming Subproblems. DLR, Oberpfaffenhofen, 1989.
  • 7. Kuliński K., Wojciechowski D., Piechna J.,: Experimental stand enabling research into the motion of an insect model wing, Acta of Bioengineering and Biomechanics, Vol 5, supl. 1, 291-297, 2003.
  • 8. Ridden P.,: http://www.gizmag.com/festo-robot-dragonfly-bionicopter/26874/, accessed: 15.11.2015.
  • 9. Rubach, P. & Sobolewski, M.,: Dynamic SLA Negotiation in Autonomic Federated Environments. In R. Meersman, P. Herrero, & T. Dillon, red. On the Move to Meaningful Internet Systems: OTM 2009 Workshops. Lecture Notes in Computer Science. Springer, pp. 248–258, 2009.
  • 10. Rubach, P. & Sobolewski, M.,: Autonomic SLA Management in Federated Computing Environments. In Parallel Processing Workshops, International Conference on. Los Alamitos, CA, USA: IEEE Computer Society, pp. 314–321, 2009.
  • 11. Sane S., Dickinson M.,: The Control of Flight Force by a Flapping Wing: Lift and Drag Production, Experimental Biology 204, 2607-2626, 2001.
  • 12. Sobieszczanski-Sobieski J., Kodiyalam S.,: BLISS/S: A new method for two-level structural optimization. Structural and Multidisciplinary Optimization, 21(1):1-13, 2001.
  • 13. Sobolewski M.: A Service-Oriented Computing Platform: An Architecture Case Study, Handbook of Research on Architectural Trends in Service-Driven Computing. IGI Global, 220-255, 2014.
  • 14. Sun M., Lan S.L.,: A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering, The Journal of Experimental Biology207, 1887-1901, 2004.
  • 15. Vanderplaats, G.N.,: CONMIN user’s manual. NASA technical memorandum X-62282, Ames Research Center and US Army Air Mobility R&D Laboratory,1978.
  • 16. Wang Z.J, Russell D.,: Effect of forewing and Hindwing Interaction on Aerodynamic Forces and Power in Hovering Dragonfly Flight, Physical Review Letters, 148101 1-4, 2007.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca3fa0ab-12c8-4735-9e73-8cfc59e4187b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.