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Abstract: In practical applications, an engineer is sometimes expected to execute the step test for tuning the controller without waiting 
much for the steady-state or a low level of disturbances. Hence, knowing that the initial settings may not be quite reliable, he/she detunes 
the controller by reducing its gain as a precaution against possible poor behaviour of the closed-loop system. It is up to their experience to 
choose by how much to detune. Therefore, the development of a practically oriented approach that would assist the engineer to choose 
the degree of gain reduction is the goal of this paper. The approach assumes that process parameters are determined by the least-squares 
approximation of the step response. Accuracy of the approximation is evaluated by a relative approximation error involving integrals of the 
error and the process response itself. The SIMC tuning rules are applied to choose the initial controller settings. The approach relies on  
detecting by simulation the worst case that may happen when the step response is triggered at any time. Detuning nomograms specify by 
how much to reduce the initial gain for PI-FOPTD and PID-SOPTD designs, given the relative approximation error. Two long-lasting lab 
experiments involving temperature control identify a plant, verify the load disturbance model through multiple step tests and demonstrate 
usage of the approach in the closed-loop system. 
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1. INTRODUCTION 

Two types of disturbances are distinguished in industrial pro-
cesses controlled by automation systems. The first one affects the 
state of the process, similar to the control input, whereas the other 
one only corrupts the output. Examples of the first type include 
disturbances of the load, fluctuations of raw material composition, 
power supply and ambient temperature usually jointly called a 
load disturbance [1,2]. Measurement noise dependent on trans-
ducer data, electromagnetic interference, and grounding quality is 
the other type. The load disturbance affects the process at low 
frequencies (LF), whereas the measurement noise interferes at 
high ones. 

To suppress the effect of the disturbances, a process control-
ler, typically PI or PID, must be reasonably well tuned, which in 
industrial practice is done experimentally by means of the step 
response or relay feedback [3]. In the case of the former, the 
parameters of the process are identified from the response and 
used to calculate controller settings. A steady-state and low level 
of disturbance, particularly the load disturbance, are the condi-
tions required to obtain a trustworthy response and reliable pa-
rameters. The use of parameters acquired from a response trig-
gered not at suitable conditions may lead to unreliable settings 
and poor behaviour of the closed-loop system. 

However, in industrial applications, it is difficult to know 
whether the process to be identified is in a steady-state or not 
disturbed. In addition, waiting for such a steady-state can be 
cumbersome for a process with a long time constant or delay [4]. 
Therefore, an engineer has to sometimes execute the test when-

ever technology permits, without much waiting. Nevertheless, as a 
precaution, he/she does not apply the initial settings directly but 
detunes the controller by reducing its gain. The degree by how 
much to detune is determined by the rule of thumb. 

Therefore, the purpose of this paper is to develop a practically 
oriented approach that will determine to what extent to reduce the 
gain in controller settings obtained from the response triggered at 
any time of process operation. A relative difference between the 
response and its least-squares approximation is the basic data for 
reducing the gain. SIMC tuning rules are applied to calculate the 
settings [2,5]. 

To justify the solutions used in the approach, we begin with a 
review of related work on process identification and SIMC tuning. 

1.1. Process identification for load disturbance 

A tutorial review of identification methods dealing with meas-
urement noise and load disturbance is presented in Ref. [4]. In the 
presence of a general form of measurement noise, such as col-
oured noise, the least-squares solutions do not give unbiased 
parameter estimates [6]. To solve the bias problem, the instru-
mental variable (IV) method that adjusts the estimates in a few 
stages can be applied [7]. As far as the load disturbance is con-
cerned, the problem of using the step response data while the 
output is not initially in a steady-state may be overcome by includ-
ing the initial state and its derivatives into the identified parame-
ters, yet assuming no load disturbance [8]. If, besides the initial 
conditions, the output is corrupted by measurement noise, the IV 
method can be applied [9]. 
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If the load disturbance description is known a priori, then the 
output may be decomposed into perturbed and unperturbed com-
ponents, so as to obtain unbiased parameters of the process 
while estimating the dynamics of the disturbance response [10]. 
For example, a period of the perturbed component may be de-
tected in this way [11]. No prior information is required if the per-
turbed component is treated as a dynamic parameter for estima-
tion. A recursive least-squares algorithm is needed in such a 
case [12]. The perturbed component can also be estimated by 
correlation analysis [13]. 

Finally, no knowledge on the initial conditions or the load dis-
turbance description is required if curve-fitting algorithms with 
quasi-Newton iterations are applied [6,7]. Both open and closed 
loops can be handled in this way, as demonstrated in Ref. [14] for 
an industrial application. In the case of overdamped systems with 
delay, each curve fitting iteration consists of two stages in which 
process parameters and the delay are estimated separate-
ly [15,16]. 

An approach is also proposed to calculate the process gain 
first from a steady-state change and then the time constant along 
with process delay in the second stage [17]. Good performance is 
reported for indirect identification of continuous delay systems 
based on discrete-time models [18]. Efficient identification from a 
low-quality step response by means of regularised least-squares 
is recommended in Ref. [19]. 

1.2. SIMC tuning rules 

The selection of PI and PID tuning rules is another relevant is-
sue. Note that to evaluate by how much the controller should be 
detuned, some quantification of the closed-loop behaviour is 
needed. Indicators of such behaviour include settling time, over-
shoot, peak time, IAE [20] or ITAE [21] integral, and relative delay 
margin [22]. However, among a large number of tuning rules 
collected in Ref. [23], only a fraction expresses controller settings 
not only in terms of process parameters, but also by a design 
specification related to the closed-loop behaviour. 

The idea of using a desired closed-loop time constant to de-
sign a discrete controller was first introduced in Ref. [24], where 

this time constant was denoted by . Later, the approach was 
adapted to the internal model control (IMC) and PID control-
ler [25]. In the case of the first- or second-order-plus-time-delay 
processes, i.e. FOPTD or SOPTD, the so-called SIMC tuning 
rules [2,5,26] express PI and PID settings in terms of the process 

parameters and the desired . This enables an engineer to 
choose how aggressive the controller should be. Due to simplicity, 
the SIMC rules have been widely approved in industrial prac-
tice [2]. Naturally, if due to disturbances, the identified parameters 

are unreliable, the value of  must be increased to avoid poor 
closed-loop behaviour. 

Performance of the SIMC rules for set-point and load disturb-
ance responses can be assessed using the IAE, leading to some 
modification of the approach [26]. Minimisation of the IAE also 
enables to apply other closed-loop indicators for design. This is 
demonstrated in Ref. [27], where a weighted average of the IAEs 
for set-point and load disturbance responses is minimised subject 
to sensitivity constraints. A similar approach is used in Ref. [28] to 
improve disturbance rejection, but without applying the pole-zero 
cancellation of the original SIMC. 

 

1.3. Outline of the approach 

The development is based on a long uninterrupted MATLAB 
simulation of FOPTD and SOPTD disturbed processes, where 
step responses are continuously triggered one after another. Load 
disturbance is simulated by a low-pass filter driven by white noise. 
Measurement noise is treated as filtered out noise [29]. 

By repeating the simulation for different process delays, final 
nomograms specify the degree of reducing the gain for PI-FOPTD 
and PID-SOPTD designs in terms of a relative approximation error 
of the step response. Practical usage of the approach is demon-
strated in a dedicated lab set up enabling repeatable tests in a 
long time period. The set up involves a temperature control plant, 
similar to the one in Ref. [30], whose dynamics can be well ap-
proximated by the FOPTD model. The load disturbance model is 
also verified from the tests. 

The paper is organised as follows. The next section introduc-
es normalised FOPTD and SOPTD process models affected by 
low-frequency load disturbance. The single, long simulation con-
sists of multiple (5,000) up–down step tests resulting in 10,000 
responses approximated by the curve fitting. Accuracy of the 
approximation is determined by a relative approximation error 
defined as the ratio of two integrals over time of the response. The 
first one integrates absolute estimation error and the second one 
involves the process response itself. 

SIMC settings for PI-FOPTD and PID-SOPTD are given in 
Section 3 by taking the desired closed-loop time constant equal to 
the process delay [5]. Having the settings, the expected closed-
loop behaviour can be inferred by calculation of the gain mar-
gin [31]. 

Controller settings and the corresponding gain margins are 
evaluated in Section 4 for each of the simulated responses. A 
minimum margin represents most inconvenient behaviour of the 
closed-loop system (worst case). This also enables to detect the 
maximum error for which the SIMC rules do not yet lead to insta-
bility. A worst case plant stabilised by means of an IMC-based 
PID controller is also considered in Ref. [32]. 

The difference between the nominal gain margin and the min-
imum margin determined above indicates by how much the design 
margin should be increased to avoid poor behaviour. In turn, that 
difference is converted in Section 5 into the corresponding reduc-
tion factor of the controller gain, expressed by respective nomo-
grams for PI-FOPTD and PID-SOPTD designs. 

The approach is verified in Section 6 by two long lab experi-
ments, one for open loop and the other for closed loop, involving a 
heating resistor kept in open air. As in the MATLAB simulation, 
each experiment consists of multiple up–down step responses 
triggered in the presence of load disturbances. The time constant 
of the low-pass filter as a disturbance model is evaluated to justify 
the value used in the earlier sections. 

2. PROCESS MODEL AND IDENTIFICATION 

2.1. Process and load disturbance 

A simulated process given in Fig. 1(a) is considered, where 𝑢 

denotes the control input, 𝑦 the output and 𝑙 the load disturbance 

interfering at LFs. High frequency (HF) measurement noise 𝑚 is 
dropped from the simulation, although in the lab experiment, the 
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filtered 𝑚 increases the effect of 𝑙. The following transfer func-
tions 

𝐺FOPTD(𝑠) =
𝑘

𝑇𝑠+1
𝑒−𝜏𝑠, 𝐺SOPTD(𝑠) =

𝑘

(𝑇𝑠+1)2 𝑒−𝜏𝑠 (1) 

represent the FOPTD and SOPTD process models (with different 

values of the parameters 𝑘, 𝑇, and 𝜏). Due to the double time 
constant in SOPTD, the two models are consistent in terms of the 

parameter set {𝑘, 𝑇, 𝜏}. Different time constants for SOPTD are 

not considered as they would require much longer control input to 
get identified values reasonably close to true ones. 

Settling times can be expressed as 4𝑇 + 𝜏 and 6𝑇 + 𝜏, re-
spectively, or 5𝑇 and 7𝑇 for 𝜏 ≤ 𝑇. In practice, due to the dis-
turbance, the step response is recorded for somewhat a longer 
time to be sure about the settling. Therefore, here, we take the 
double step-response settling time, i.e. 10𝑇 for FOPTD and 14𝑇 
for SOPTD, as the identification time horizon. 

 
Fig. 1. (a) Process model, (b) load disturbance model, (c) step responses of the process y and model ym, estimation error e 

     
Fig. 2. Number of step responses in terms of the relative approximation error r 

              
Fig. 3. Relative deviations of the parameter estimates for (a) FOPTD, σl = 0.3, (b) SOPTD, σl = 0.15
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The LF load disturbance 𝑙 is generated by the low-pass filter 
shown in Fig. 1(b), with the time constant 𝑛-times longer than the 
process. The results presented in the following sections refer to 

𝑛 = 10. Although it would be more appropriate to call the 𝑛 = 1 
case a “medium frequency” and not LF, it is left in the study for 

comparison. The level of 𝑙 is adjusted by means of the standard 

deviation 𝜎𝑙 of the white noise driving the filter. A sample step 
response 𝑦 of the disturbed process is shown in Fig. 1(c), where 

𝑡H denotes the identification time horizon. 

2.2. Relative approximation error 

The least-squares curve fitting the MATLAB lsqcurvefit func-
tion is used for identification, since the autoregressive arx and the 
instrumental variable iv4 cannot deal with the load disturb-
ance [6,7]. Let {𝑘m, 𝑇m, 𝜏m} denote the parameter estimates of 

the identified model, 𝑦m its step response and 𝑒 = 𝑦 − 𝑦m the 
estimation error. The integrals 

𝑌 = ∫ |𝑦(𝑡) − 𝑦0|d𝑡
𝑡H

0
, 𝐸 = ∫ |𝑒(𝑡)|d𝑡

𝑡H

0
, (2a) 

representing the shaded areas in Fig. 1(c) determine the ratio 

𝑟 =
𝐸

𝑌
 (2b) 

treated as an indicator to what extent the response is deformed by 
the load disturbance. The ratio, termed here a relative approxima-
tion error, is a basic data for detuning. 

Realistic values of 𝑟 for which parameter deviations from true 
values are not too large are below 0.05 for FOPTD and 0.03 for 
SOPTD. Larger deviations may cause instability of the closed-loop 
system tuned according to the SIMC rules [5] or excessive slug-
gishness in the case of the detuned controller (Section 5). Hence, 
trustworthy SOPTD responses require a smaller level of the load 
disturbance. If 𝑟 of a particular real response turns out too high, it 
may be reduced in the next response by increasing the input step 
(if technology permits). 

2.3. Simulation methodology and parameter estimates 

Consider a continuously operating real process that can be 
tested any time by a step response. Meanwhile, the process can 
be perturbed by the load disturbance to a varying degree. An 
equivalent of such a process is implemented here in the form of a 
long uninterrupted simulation involving either the FOPTD or the 
SOPTD model, with the disturbance generated as shown in 
Fig. 1(b). During this simulation, step responses are triggered one 
after another, characterised by their own relative approximation 
error (2b). It turns out that about 10,000 tests are needed in the 

simulation to get histograms of 𝑟 with fairly repeatable shape (see 
Fig. 2). 

The results presented in the paper refer to the normalised 
time-constant-scaled process model, i.e. for 𝑘 = 1, 𝑇 = 1, and 𝜏 

in the typical interval [0.1, 1] (e.g. Ref. [31]). Some figures refer 

to 𝜏 = 0.32 (middle of the decade). If 𝑇𝑚 and 𝜏𝑚 are raw esti-

mates of the parameters, then 𝜏 = 𝜏𝑚/𝑇𝑚. 
Two histograms of the number of responses in terms of the er-

ror 𝑟 for basic and twice increased standard deviation 𝜎𝑙 of the 

load disturbance are shown in Fig. 2 for FOPTD. Increase of 𝜎𝑙 
extends the range of 𝑟 while decreasing the maximum. 

Roughly comparable deviations of the parameter estimates 
from true values are shown as bar graphs in Figs. 3(a) and (b) for 
FOPTD and SOPTD, respectively. Naturally, the deviations grow 
with the relative error 𝑟. Dots in the middle of the bars are means, 
and rectangle heights denote two standard deviations. The ranges 

𝑟 = 0.04 for FOPTD and 0.024 for SOPTD correspond to the 
load disturbance deviations 𝜎𝑙 = 0.3 and 0.15. This indicates 
that a similar degree of confidence in the SOPTD model as in the 
FOPTD requires a significantly lower disturbance level. 

3. GAIN MARGIN FOR SIMC-BASED PI AND PID 

Suppose for the time being that no load disturbance affects 
the process. The popular SIMC tuning rules used here express PI 
and PID settings in terms of the parameters {𝑘, 𝑇, 𝜏} and a de-

sired closed-loop time constant 𝜆 [2,5]. 
Consider first the FOPTD process in Eq. (1) for which the PI 

controller 

𝐺PI(𝑠) = 𝑘𝑝 (1 +
1

𝑇𝐼𝑠
) (3a) 

suffices. Given the desired 𝜆, the SIMC rules are as follows 

𝑘𝑃 =
1

𝑘

𝑇

𝜆+𝜏
,    𝑇𝐼 = 𝑇. (3b) 

Skogestad in Ref. [5] recommends 

𝜆 = 𝜏 (4) 

to get a tight response, whereas 𝜆 = 1.5𝜏 provides a smoother 

response and 𝜆 = 0.5𝜏 a more aggressive one. Some reduction 
of 𝑇𝐼  for the large time constant 𝑇 improves the reaction to the 
load disturbance [5,27]. However, we remain with the recom-
mended  Eq. (4) to preserve simplicity. 

For Eq. (4), the rules become 

𝑘𝑃 =
1

𝑘

𝑇

2𝜏
,    𝑇𝐼 = 𝑇 (5) 

and the open-loop transfer function for 𝐺FOPTD(𝑠) obtains the 
simple form 

𝐺open(𝑠) = 𝐺PI(𝑠)𝐺FOPTD(𝑠) =
1

2𝜏𝑠
𝑒−𝜏𝑠 (6) 

due to pole-zero cancellation. Since the plant model is not known 
exactly, the cancellation is not perfect. Therefore, some reduction 

of the gain 𝑘𝑃 is needed to avoid possible oscillations (Section 5). 

Gain margin GM = 1 |𝐺open(𝑗𝜔GM)|⁄  is determined by the 

frequency 𝜔GM obtained from the angle condition 

∠𝐺open(𝑗𝜔GM) = −𝜋. In the case of Eq. (6), we have 

∠𝐺open(𝑗𝜔GM) = − 𝜋 2⁄ − 𝜏𝜔𝐺𝑀, which yields 

𝜔GM =
1

𝜏

𝜋

2
   and   |𝐺open(𝑗𝜔GM)| =

1

𝜋
. (7) 

So, for the PI-FOPTD design, we get 

GM = 𝜋. (8a) 

Gain margin expressed in decibels will also be used, so 

GMdB = 9.94 dB ≅ 10 dB. (8b) 

For the SOPTD process in Eq. (1) and the PID controller,  

𝐺PID(𝑠) = 𝑘𝑝 (1 +
1

𝑇𝐼𝑠
+ 𝑇𝐷𝑠) (9a) 
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the SIMC rules have the form [2,5] 

𝑘𝑃 =
1

𝑘

2𝑇

𝜆+𝜏
,    𝑇𝐼 = 2𝑇,   𝑇𝐷 =

𝑇𝐼

4
. (9b) 

Then the controller becomes 

𝐺PID(𝑠) = 𝑘𝑃
(𝑇𝑠+1)2

2𝑇𝑠
, (10a) 

where for the recommended 𝜆 = 𝜏, we get 

𝑘𝑃 =
1

𝑘

𝑇

𝜏
 (10b) 

and the transfer function 𝐺open(𝑠) = 𝐺PID(𝑠)𝐺SOPTD(𝑠) re-

tains the form Eq. (6), so the margin GM or GMdB is the same as 
before. 

4. GAIN MARGINS FOR THE IDENTIFIED MODELS 

4.1. Gain margin and relative approximation error 

Let {𝑘𝑚, 𝑇𝑚, 𝜏} denote parameter estimates obtained from 
one of the disturbed responses characterised by a relative approx-
imation error 𝑟 in Eq. (2b). In the case of the PI-FOPTD design, 
we have 

𝑘𝑃 =
1

𝑘𝑚

𝑇𝑚

2𝜏𝑚
,    𝑇𝐼 = 𝑇𝑚 (11) 

from Eq. (5). Since the simulated process is given in the normal-

ised form 𝑒−𝜏𝑠 (𝑠 + 1)⁄  (Section 2), the open-loop transfer func-
tion becomes 

𝐺open(𝑠) = 𝑘𝑃
𝑇𝐼𝑠+1

𝑇𝐼𝑠

1

𝑠+1
𝑒−𝜏𝑠. (12) 

The angle condition ∠𝐺open(𝑗𝜔𝐺𝑀) = −𝜋 results in the 

equation 

𝜋

2
+ arctg(𝑇𝐼𝜔GM) − arctg 𝜔GM − 𝜏𝑚𝜔GM = 0 (13a) 

for the frequency 𝜔𝐺𝑀 . After solving Eq. (13a), the corresponding 
gain margin is calculated as 

GM =
𝑇𝐼𝜔GM

𝑘𝑃
√

𝜔GM
2 +1

(𝑇𝐼𝜔GM)2+1
. (13b) 

The bar graph in Fig. 4 presents the margin GMdB in terms of 

the relative error 𝑟. Each bar consists of 1,000 points. Although 
the means are close to 10 dB, there are cases with quite small or 
even negative margins. The approximating parabolic curve 

GMdB,m(𝑟, 𝜏 = 0.32) specifies the minimum value of the margin 

in terms of the relative error. The minimum is defined here as 
three standard deviations below the mean. So, a few outliers in 

Fig. 4 are left out. From the controller’s viewpoint, GMdB,m indi-

cates the worst case among the step responses having the same 

relative error 𝑟. The value of GMdB,m is used in the next section 

to determine the degree of detuning. 
Note that besides the main curve (continuous line) in Fig. 4 

obtained for 𝑛 = 10 in the low-pass filter of Fig. 1(b), there are 

also two other curves corresponding to the filters with 𝑛 = 1 and 
100. These two curves are fairly close to the main one. This 

confirms that the low-pass filter with 𝑛 = 10 can be an appropri-
ate model of the load disturbance interfering at  LFs. 

 
Fig. 4. PI-FOPTD gain margin as a function of the relative approximation 

error 𝑟 for 𝜏 = 0.32 

4.2. Stability limit 

By repeating the simulation and calculations for other delays 

𝜏 ∈ [0.1, 1], a few functions GMdB,m(𝑟, 𝜏) of the minimum gain 

margin shown in Fig. 5 are obtained. Increase of 𝜏 reduces the 
slope of the plots. Note that for 𝜏 < 0.56, there exists a certain 

𝑟max for which GMdB,m becomes zero, which means stability 

limit. Hence for 

𝑟 > 𝑟max, (14) 

detuning the controller becomes a necessity. The stability limit 
function 𝑟max(𝜏) is shown in Fig. 6. As seen, 𝑟max increases with 

𝜏, which indicates more favourable conditions for identification. 

Similar plots GMdB,m(𝑟, 𝜏) and the function 𝑟max(𝜏) can be 

obtained for the PID-SOPTD design. About two times smaller 
values of 𝑟max for PID-SOPTD in Fig. 6 translate into more de-
manding conditions for the step tests, i.e. lower level of the load 
disturbance. 

 
Fig. 5. PI-FOPTD minimum gain margin. GMdB,m as a function of 𝑟 
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Fig. 6. Relative approximation error 𝑟max for stability limit 

5. REDUCTION OF THE CONTROLLER GAIN 

While gain margins above GMdB,m ≅ 10 dB (Fig. 4) can be 

accepted since they indicate aperiodic responses, the ones below 
10 dB rather not due to possible overshoots, oscillatory transients 

or even instability. The plots GMdB,m developed earlier determine 

the minimum margin that may occur for a particular relative ap-
proximation error 𝑟. 

To avoid poor behaviour due to the insufficient gain margin, 
the design margin should be moved up by the difference between     

the desired nominal value GMdB and the worst case minimum 

value GMdB,m. This can be done by replacing 𝑘𝑃 in Eq. (11) by 

𝜅𝑘𝑃, where 𝜅 ≤ 1 is the detuning factor. 
Before the reduction, we have 

𝐺open(𝑠) = 𝑘𝑃𝐺open
′ (𝑠) (15) 

with 

GMdB,m = 20 log10
1

𝑘𝑃|𝐺open
′ (𝑗𝜔GM)|

. (16) 

The reduction is supposed to restore the nominal gain margin 

GMdB, so 

GMdB = 20 log10
1

𝜅𝑘𝑃|𝐺open
′ (𝑗𝜔GM)|

. (17) 

Subtracting Eq. (17) from Eq. (16) gives 

GMdB,m − GMdB = 20 log10 𝜅, (18) 

hence 

𝜅 = 10(GMdB,m−GMdB) 20⁄ . (19) 

The nomogram of the gain reduction factor 𝜅 in terms of the 

relative approximation error 𝑟 and process delay 𝜏 is shown in 

Fig. 7(a) for PI-FOPTD. The value of 𝜅 decreases with 𝑟 and 
increases with 𝜏. Dots indicate 𝑟max, i.e. the stability limit from 

Fig. 6, where 𝜅 equals 1 𝜋⁄ ≅ 0.32 according to Eq. (8a). Thus, 

having 𝑟 and 𝜏 for a particular step response, one can read out 𝜅 
from the nomogram and reduce the initial controller gain.

 

        
Fig. 7. Gain reduction factor κ of SIMC-based design for: (a) PI-FOPTD, (b) PID-SOPTD

The analogous nomogram for PID-SOPTD is given in Fig. 7(b) 
with a smaller range of the relative error 𝑟. At the first glance, for 

small 𝑟, both PI and PID could be applied. However, a more 
careful comparison of the nomograms reveals that the reduction 
factor 𝜅 for PID-SOPTD is much smaller than for PI-FOPTD. For 

instance, if 𝜏 = 0.32, the error 𝑟 = 0.01 yields 𝜅 = 0.36 for PID-

SOPTD and 0.62 for PI-FOPTD. Only for very small 𝑟, the differ-
ence becomes negligible. This is another explanation why PI is 
most often preferred over PID in process control. 

The nomograms determine the reduction factor 𝜅 also beyond 
the stability limit, i.e. for 𝑟 > 𝑟max. However, since the proposed 
approach is worst-case-based, some of the closed-loop respons-

es may turn out excessively sluggish for large 𝑟. In particular, it 
refers to the cases where the gain margins GMdB are above the 
nominal 10 dB (see Fig. 4), which indicates slow responses. 
Reduction of the gain makes them even slower. Unfortunately, for 
any disturbed step test, the gain margin is not known  as to 
whether it is above or below 10 dB. Therefore, to avoid too slug-
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gish responses, we recommend to accept only such step tests 
that satisfy the condition 

𝑟 < 𝑟max , (20) 

with 𝑟max given in Fig. 6. This excludes the tests with too large an 
approximation error. 

The proposed approach is summarised in the form of a natural 
algorithm in Fig. 8. From the recorded step response, the model 

parameters, the time-scaled delay 𝜏 and the relative approxima-

tion error 𝑟 are first obtained. The parameter 𝑟max is then deter-
mined from the nomogram in Fig. 6. If the condition 𝑟 < 𝑟max is 
met, controller settings are given by the SIMC rules, followed by 
the gain reduction according to one of the nomograms in Fig. 7. 
Otherwise, if possible, the step response is repeated for an in-
creased control step. If not, an engineer must wait for more fa-
vourable process conditions. The smooth closed-loop response is 
expected after completing the procedure. 

 
Fig. 8. Algorithm for tuning the controller from a disturbed step response 

6. LAB EXPERIMENT 

6.1. Equipment set up and operation 

A simple lab set up (Fig. 9) has been assembled to demon-
strate the proposed approach in two long experiments, one for 
open loop and the other for closed loop, involving repeatable tests 
under varying load disturbances. The set up involves a heating 
resistor kept in open air, Pt100 temperature sensor, transducer, 
PWM switch and an embedded system board connected to PC 
running MATLAB. The embedded system filters the measure-
ments, works as the temperature controller, generates a PWM 
output signal and supervises the whole operation. Ambient tem-
perature drift (daily cycle) is treated as a slowly varying load dis-
turbance, although unexpected jumps caused, e.g. by opening the 
door or window, also happen for time to time. The basic open-loop 
experiment consists of 50 uninterrupted up-down step tests (100 
responses in total) triggered automatically by the embedded 
system. The system continuously records the temperature in a file 
sent to the PC for identification. A second-order Butterworth filter 
with 10 s time constant is applied for measurement of the noise 
rejection. 

For a nominal PWM = 25%, the resistor temperature is 

about 76 °C. After increasing the PWM to 27%, the tempera-
ture is recorded for 30 min, which is the 𝑡H time in the inte-

grals Eq. (2a). Such a modest 2% increase may correspond to 
technological restrictions in an industrial case. After waiting for 30 
min, the input is decreased back to 25% and the down-response 
recorded again. Two up-down temperature changes of the plant 
and the models are shown in Fig. 10 to clarify the tests. The mod-
el output stops at the 𝑡H time of Eq. (2a) followed by waiting. The 
whole experiment takes 100 h. The average up-down temperature 

change is 2.7 °C. 

6.2. Verification of the disturbance model 

Verification that the low-pass filter driven by white noise 
(Fig. 1(b)) can be a suitable model of the load disturbance is one 
of the objectives of the open-loop experiment. The verification 
involves three steps: 

 Execution of 50 up-down tests with identification of the pa-

rameters {𝑘𝑚, 𝑇𝑚, 𝜏𝑚} by means of lsqcurvefit. 

 Evaluation of the averages {�̅�, �̅�, 𝜏̅} treated as parameters of 

the plant for additional simulation. 

 Selection of the low-pass filter parameters {𝑛, 𝜎𝑙} to get a 
similar frequency spectrum of the real and simulated plants. 
Histograms of the identified parameters are presented in 

Fig. 11. Parameter averages are the following 

�̅� = 1.37 °C PWM%⁄ ,    �̅� = 230 s,    𝜏̅ = 67 s. (21) 

To verify the load disturbance model, the multiplier 𝑛 in the fil-

ter time constant 𝑛�̅� and the standard deviation 𝜎𝑙 of the white 
noise are determined by adjusting the simulated frequency spec-
trum to the real one by using FFT [33]. The resulting estimates are 

𝑛∗ = 32,    𝜎𝑙
∗ = 10 PWM% (22) 

(𝜎𝑙
∗ in control units).  
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The two spectra after adjustment of the disturbance model are 
shown in Fig. 12(a), where peaks represent odd harmonics of the 
up-down changes. The spectra practically overlap which confirms 

that the transfer function 1 (𝑛∗�̅�𝑠 + 1)⁄  driven by white noise 

with the standard deviation 𝜎𝑙
∗ models the load disturbance in the 

experiment quite well. Change of 𝑛 would increase (𝑛 > 𝑛∗) or 

decrease (𝑛 < 𝑛∗) the slope of the simulated spectrum. Improper 

value of the standard deviation 𝜎𝑙 moves this spectrum up or 
down (Fig. 12(b)). The frequency range 0–1 mHz corresponds to 
harmonic components with periods above 1,000 s covering 4 time 

constants �̅� (4�̅� = 920). A rather large value of 𝑛∗ is obtained 
here, so half a decade over 𝑛 = 10 used before may be a hint for 
simulation of other processes subject to load disturbance. 
 
 
 
 

6.3. Controller design and closed loop 

The histogram of the distribution of 𝑟 for the 100 recorded 
step responses is shown in Fig. 13a. Out of the responses, six 
have not passed the acceptance test, Eq. (20). Exemplary data 
from one of the accepted responses consist of the FOPTD pa-

rameters 𝑘𝑚 = 1.37 °C PWM%⁄ , 𝑇𝑚 = 266 s, 𝜏𝑚 = 66.8 s 

and the integrals 𝑌 = 81.8 °C ∙ s, 𝐸 = 1.24 °C ∙ s in Eq. (2a). 

So, we have the normalised delay 𝜏 = 𝜏𝑚 𝑇𝑚 = 0.296⁄  and the 
relative approximation error 𝑟 = 𝐸 𝑌⁄ = 0.0152 (𝑟max =
0.026 from Fig. 6). The SIMC rules Eq. (11) give the initial PI 

settings 𝑘𝑃 = 1.23 and 𝑇𝐼 = 226. Having 𝑟 and 𝜏, the value of 

the gain reduction factor 𝜅 read out from Fig. 7a is 0.48 (after 
some interpolation). Hence, the controller gain is reduced to 

𝜅𝑘𝑃 = 0.592.

 

 
Fig. 9. Equipment set up 

 
Fig. 10. Two exemplary up-down step responses 
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Fig. 11. Histograms of the identified parameters 

       
Fig. 12. Frequency spectra of the real and simulated plant outputs: (a) after adjustment of the disturbance model, (b) for improper standard deviation σl 

       
Fig. 13. (a) Number of step responses in terms of the relative error r, (b) gain margins for the initial and detuned settings 
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Fig. 14. Detuned closed-loop responses 

The resulting closed-loop responses of the real plant recorded 

in the second experiment are shown in Fig. 14 for the 80 °C 
setpoint. The case for 𝜅examp relates to the exemplary calcula-

tions given above. The responses are smooth and settle down in 
a fairly similar time. The reduction factor assumes values from 

𝜅min = 0.337 to 𝜅max = 0.537. Note that 𝜅min is close to the 

stability limit 1 𝜋 ≅ 0.318⁄ . 
By taking the average parameters in Eq. (21) as plant data, 

one can check how the gain margins look like before and after the 
reduction. Lower squares in Fig. 13(b) represent the initial mar-
gins. Some of them are below the nominal 10 dB. The reduction 
increases the margins by 5–8 dB depending on the relative error 

𝑟. 
The presented results are obtained for rather a small input 

step ∆PWM = 2% to reflect technological restrictions. A larger 

step would decrease values of the error 𝑟 thus, increasing the 
reduction factor 𝜅. For ∆PWM = 5% the values of 𝑟 do not 

exceed 0.012, giving 𝜅min = 0.568 and 𝜅max = 0.863. 
The PID controller for the SOPTD model is not implemented 

since due to the smaller 𝑟max (Fig. 6), too many step tests do not 
pass the acceptance condition in Eq. (20). Besides, the reduction 

factor 𝜅 is much smaller. 
Finally, we explain why the identified 𝑛∗ = 32 for the low-

pass filter has not been used, although possible in this particular 
case. In a practical situation, an engineer only knows that the load 
disturbance interferes at lower frequencies in relation to process 
dynamics, but does not know exactly how much. Therefore, the 
approach with 𝑛 = 10, justified by the similar plots in Fig. 4, 
seems an appropriate solution. 

7. CONCLUSIONS 

Due to technological restrictions, the step response required 
for controller tuning is sometimes triggered when the process is 
not in a steady-state or is subject to major load disturbance. This 
means that the parameter estimates obtained from the response 
and corresponding controller settings are not quite reliable. 
Hence, to avoid possible poor behaviour of the closed-loop sys-
tem, the settings must be detuned, typically by reducing the gain. 
It is up to the engineer's experience to decide by how much to 
reduce. 

FOPTD and SOPTD processes have been considered with 
the load disturbance modeled by a low-pass filter driven by white 
noise. Process parameters are determined by the least-squares 
curve fitting, so the estimation error of the response indicates to 
what extent the process is not in a steady-state or disturbed. 
Relative approximation error relates the error to the step response 
and is a basic data for reducing the gain. 

SIMC rules have been applied to tune PI and PID controllers 
for FOPTD and SOPTD, respectively, taking process delay as the 
recommended closed-loop time constant. By repeating the tests in 
a long, uninterrupted simulation, the case with the lowest gain 
margin is detected and used subsequently for detuning. Final 
nomograms specify by how much to reduce the initial controller 
gain given a relative approximation error and process delay. So 
contribution of this paper rests in the precise evaluation of the 
gain reduction to assist the engineer. 

Low-frequency load disturbance model has been verified in a 
simple, yet long, lab experiment with multiple step tests.  

The MATLAB lsqcurvefit function has been used for identifica-
tion. Ultimately however, the approach is supposed to be trans-
ferred from the embedded system board into a PLC-based pro-
cess control equipment [34]. In such a case, a corresponding 
code may be written in structure text language of IEC 61131-3 
standard [35] applying the two-stage curve-fitting algorithm 
from [15,16] for identification. 

Research on the controller retuning directly in a closed-loop 
system subject to load disturbance is left for future work. 

REFERENCES 

1. Åström KJ, Murray RM. Feedback Systems: An Introduction for 
Scientists and Engineers. Princeton: Princeton University Press; 
2008. 

2. Seborg DE, Edgar TF, Mellichamp DA, Doyle FJ. Process Dynamics 
and Control, 4th Edition. New York: Wiley; 2016. 

3. Åström KJ, Hägglund T. Advanced PID Control. Research. Triangle 
Park; 2005. 

4. Liu T, Wang QG, Huang HP. A tutorial review on process identifica-
tion from step or relay feedback test. Journal of Process Control. 
2013; 23(10):1597-1623. 

5. Skogestad S. Simple analytic rules for model reduction and PID 
controller tuning. Journal of Process Control. 2003; 13(4):291-309. 

6. Ljung L. System Identification: Theory for the User, 2nd Edition. New 
York: Prentice Hall; 1999. 

7. Söderström T, Stoica P. System Identification, 2nd Edition. New 
York: Prentice Hall; 2001. 

8. Ahmed S., Huang B, Shah SL. Novel identification method from step 
response. Control Engineering Practice. 2007; 15(5):545-556. 

9. Ahmed S, Huang B, Shah SL. Identification from step responses with 
transient initial conditions. Journal of Process Control. 2008; 
18(2):121-130. 

10. Liu T, Huang B, Qin SJ. Bias-eliminated subspace model identifica-
tion under time-varying deterministic type load disturbance. Journal 
of Process Control. 2015; 25:41-49. 

11. Hou J, Liu T, Wang QG. Recursive subspace identification subject to 
relatively slow time-varying load disturbance. International Journal of 
Control. 2017; 91(3):622-638. 

12. Dong S., Liu T, Wang W, Bao J, Cao Y. Identification of discrete-time 
output error model for industrial processes with time delay subject to 
load disturbance. Journal of Process Control. 2017; 50:40-55. 

13. Li LJ, Dong TT, Zhang S, Zhang XX, Yang SP. Time-delay identifica-
tion in dynamic processes with disturbance via correlation analysis. 
Control Engineering Practice. 2017; 62:92-101. 

 



Andrzej Bożek, Leszek Trybus                                      DOI 10.2478/ama-2024-0025 
Reduced gain PI/PID Controllers for FOPTD/SOPTD Processes under Load Disturbance 

222 

14. Kon J, Yamashita Y, Tanaka T, Tashiro A, Daiguji M. Practical appli-
cation of model identification based on ARX models with transfer 
functions. Control Engineering Practice. 2013; 21(2):195-203. 

15. Hwang SH, Lai ST. Use of two-stage least-squares algorithms for 
identification of continuous systems with time delay based on pulse 
responses. Automatica. 2004; 40 (9):1561-1568. 

16. Yan R, Liu T, Chen F, Dong S. Gradient-based step response identi-
fication of overdamped processes with time delay. Systems Science 
& Control Engineering. 2015; 3(1):504-513. 

17. RamVD, Chidambaram M. On-line controller tuning for critically 
damped SOPTD systems. Chemical Engineering Communications. 
2014; 202(1):48-58. 

18. Du YY, Tsai JS, Patil H, Shieh LS, Chen Y. Indirect identification of 
continuous-time delay systems from step responses. Applied Math-
ematical Modelling. 2011; 35(2):594-611. 

19. Liu Q, Shang C, Huang D. Efficient low-order system identification 
from low-quality step response data with rank-constrained optimiza-
tion. Control Engineering Practice. 2021; 107:104671. 

20. Jin Q, Liu Q, Huang B. Control Design for Disturbance Rejection in 
the Presence of Uncertain Delays. IEEE Transactions on Automation 
Science and Engineering. 2017; 14(4):1570-1581. 

21. Sung SW, Lee J, Lee IB. Process Identification and PID Control. 
Wiley-IEEE Pres. 2009. 

22. Sun L, Xue W, Li D, Zhu H, Su Z. Quantitative tuning of active dis-
turbance rejection controller for FOPTD model with application to 
power plant control. IEEE Transactions on Industrial Electronics. 
2022; 69(1):805-815. 

23. O'Dwyer A. Handbook of PI and PID Controller Tuning Rules, 3rd 
Edition. Imperial College Press; 2009. 

24. Dahlin EB. Designing and tuning digital controllers. Instruments and 
Control Systems. 1968; 41(6):77-83. 

25. Rivera DE, Morari M, Skogestad S. Internal model control: PID 
controller design. Industrial & Engineering Chemistry Process Design 
and Development. 1986; 25(1):252-265. 

26. Veronesi M, Visioli A. Performance Assessment and Retuning of PID 
Controllers. Industrial & Engineering Chemistry Research. 2009; 
48(5):2616-2623. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27. Grimholt C, Skogestad S. Optimal PI and PID control of first-order 
plus delay processes and evaluation of the original and improved 
SIMC rules. Journal of Process Control. 2018; 70:36–46. 

28. Veronesi M, Visioli A. Improving lambda tuning of PI controllers for 
load disturbance rejection. In Proceedings of the 26th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automa-
tion (ETFA); 2021; 1-6. 

29. Hägglund T. A unified discussion on signal filtering in PID control. 
Control Engineering Practice. 2013; 21(8):994-1006. 

30. Oliveira PM, Hedengren JD. An APMonitor temperature lab PID 
control experiment for undergraduate students. In Proceedings of the 
24th IEEE International Conference on Emerging Technologies and 
Factory Automation (ETFA). 2019; 790-797. 

31. Veronesi M, Visioli A. On the Selection of Lambda in Lambda Tuning 
for PI(D) Controllers. IFAC-PapersOnLine. 2020; 53(2):4599-4604. 

32. Saxena S, Hote YV. Stabilization of perturbed system via IMC: An 
application to load frequency control. Control Engineering Practice. 
2017; 64:61-73. 

33. Pintelon R, Schoukens J. System Identification: A Frequency Domain 
Approach, 2nd Edition. Wiley; 2012. 

34. Rzońca D, Sadolewski J, Stec A, Świder Z, Trybus B, Trybus L. 
Developing a multiplatform control environment. Journal of Automa-
tion, Mobile Robotics and Intelligent Systems. 2019; 13(4):73-84. 

35. EN 61131-3, Programmable controllers – Part 3: Programming 
languages (IEC 61131-3:2013), International Standard; 2013. 

Andrzej Bożek:  https://orcid.org/0000-0003-3015-7474 

Leszek Trybus:  https://orcid.org/0000-0002-1415-3679 

 

This work is licensed under the Creative Commons 
BY-NC-ND 4.0 license. 

 

https://orcid.org/0000-0003-3015-7474
https://orcid.org/0000-0002-1415-3679
https://orcid.org/0000-0003-3015-7474
https://orcid.org/0000-0002-1415-3679

