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Abstract: In this paper the problem of existence of solution of
polynomial equations over the field of real numbers is considered.
In particular, the explicit necessary and sufficient conditions are es-
tablished for the equation A(z)X + B(z)Y = C(z) in polynomial
matrices to have a solution for X and Y over the field of real num-
bers, with X being non-singular, for every polynomial matrix C(z)
from a given class.
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1. Introduction

Let R be the field of real numbers. Also, let R[z] be the ring of polynomials
with coefficients in R. Let A(z) and B(z) be fixed matrices over R[z] with
dimensions mxk and m x p, respectively. Further, let δι for i = 1, 2, ...,m, be
the row degrees of [A(z), B(z )]. Then, let L be the class of all matrices C(z)
over R[z] with dimensions mxq and row degrees less than or equal to δι for
i = 1, 2, ...,m.

In this paper we study the following problem: do there exist matrices X and
Y over R of appropriate dimensions, with X being non-singular, such that

A (z)X +B (z)Y = C (z) (1)

for every polynomial matrix C(z) from a given class L?
If so, give the necessary and sufficient conditions for the equation (1) to have

a solution for X and Y over R with X being non-singular, for every polynomial
matrix C(z) from a given class L, and a procedure for the computation of the
solution.
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Sufficient conditions, under which equation (1) will have a solution for X

and Y over R with X being non-singular, for every polynomial matrix C(z)
from a given class L, have been established by Kucera and Zagalak (1992).

In this paper, explicit necessary and sufficient conditions are established for
the equation (1) to have a solution for X and Y over R with X being non-
singular, for every polynomial matrix C(z) of dimension m x q, from a given
class L and a procedure is established for the computation of the solution. The
results of this paper may be useful in the study of some problems in the area of
linear implicit systems, see Kucera, and Zagalak (1992), Korotka, Zagalak and
Loiseau (2012), and Korotka, Zagalak, Loiseau and Kucera (2012).

2. Basic concepts and preliminary results

This section contains lemmas, which are needed to prove the main result of this
paper and some basic notions from linear algebra and algebra of polynomial
matrices that are used throughout the paper.

Let D and E be matrices over R of dimensions m x n, respectively. Let
also rank[D] = r. Then, there exist non-singular matrices P and M over R of
dimensions m x m and n x n, respectively, such that

D = P

[

Ir 0
0 0

]

M. (2)

Let

P−1E =

[

E1

E2

]

. (3)

Consider the linear equation

DX = E. (4)

By using (2) and (3), and some algebraic manipulations, equation (4) can be
rewritten as follows:

[

Ir 0
0 0

]

MX =

[

E1

E2

]

. (5)

It follows directly from (5) that the columns of the matrices D and E span the
same linear space over R, or, equivalently, there exists a non-singular matrixX
over R of appropriate dimensions, which satisfies (4) and (5), if and only if the
following conditions hold:

rank [E1] = r and E2 = 0. (6)

Let Z be a non-singular matrix of appropriate dimensions such that

E1 = [Ir, 0]Z. (7)
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If conditions (6) are satisfied, then the non-singular matrix X over R of appro-
priate dimensions, satisfying (4) and (5), is given by

X = M−1

[

Ir 0
K N

]

Z, (8)

where K,N are arbitrary matrices over R of appropriate dimensions, with ma-
trix N being non-singular.

LetD(z) and E(z) be polynomial matrices of dimensionsm x n, respectively,
with elements in R[z]. Let µι for i = 1, 2, ...,m be the row degrees of D(z).
Also, let the row degrees of the matrix E (z) be less than or equal to µι for
i = 1, 2, ...,m. Consider the linear equation

D (z)X = E(z). (9)

Let di(z) and ei(z) for i = 1, 2, ...,m be the rows of the polynomial matrices
D(z) and E(z), respectively, with elements in R[z]. Write the row vectors di(z)
and ei(z) for i = 1, 2, ...,m as follows

di(z) = Σµι

j=0dijz
j and ei(z) = Σµι

j=0eijz
j , (10)

where dij and eij are row vectors over R of appropriate dimensions. Substituting
(10) into (9) and using some algebraic manipulations we obtain the following
system of linear equations:

DX = E. (11)

Since equations (9) and (11) are equivalent, it follows directly from the above
that the columns of the matrices D(z) and E(z) span the same linear space over
R, or, equivalently, there exists a non-singular matrix X over R of appropriate
dimensions that satisfies (9) and (11), if and only if conditions (6) hold. It is
now, therefore, absolutely clear, when the columns of two polynomial matrices
with elements in R[z] span the same linear space over R.

Taking into consideration the above, it is natural to pose the following ques-
tion. When the equation (9) has a solution for every polynomial matrix E(z)
with elements in R[z] and row degrees less than or equal to µι for i = 1, 2, ...,m?
The equations (9) and (11) are equivalent. This implies that equation (9) has
a solution for every polynomial matrix E(z) with elements in R[z], if and only
if the equation (11) has a solution for every matrix E over R or, equivalently,
if and only if the matrix D over R has full row rank. It is well known from al-
gebra of polynomial matrices that the columns of polynomial matrix E(z) with
elements in R[z] span the linear space over R of all polynomial column vectors
with row degrees less than or equal to µι for i = 1, 2, ...,m, or, equivalently, the
equation (9) has a solution for every polynomial matrix E(z) with elements in
R[z] and row degrees less than or equal to µι for i = 1, 2, ...,m, if and only if
the matrix D over R has full row rank.



180 K.H. Kiritsis

Lemma 1 Let A(z), B(z) and C(z) be fixed matrices with elements in R[z] of
dimensions m x k , m x p and m x q, respectively. Then, equation (1) has a
solution for X and Y over R if and only if the following condition holds:

1. The linear space over R spanned by the columns of C(z) is a subspace of
the linear space over R spanned by the columns of [A(z), B(z)].

Proof. Equation (1) can be rewritten as follows, see Kucera and Zagalak
(1992):

[A(z), B(z )]

[

X

Y

]

= C(z).

Since, by assumption, X and Y are matrices over R, the condition 1 of the
Lemma follows directly from the above relationship and the proof is complete.

Lemma 2 Let k = q, also let A(z), B(z) and C(z) be fixed matrices with elements
in R[z] of dimensions mx k, mxp, and mx q, respectively. Then, equation (1)
has a solution for X and Y over R with X being non-singular if and only if the
following condition holds:

1. The columns of the matrices [A(z), B(z)] and [C(z), B(z)] span the same
linear space over R.

Proof. Let equation (1) have a solution for X and Y over R with X being
non-singular, see Kucera and Zagalak (1992). Then

[A (z) , B (z)]

[

X 0
Y I

]

= [C(z), B(z )].

Since, by assumption, matrixX is non-singular, the transformation matrix in
the above equation is also non-singular and therefore the columns of the matrix
[A(z), B(z )] span the same linear space over R as those of [C(z), B(z)]. This
is condition 1 of Lemma 2. To prove sufficiency, let T and Q be non-singular
matrices over R of appropriate dimensions, such that

A (z)T = [A1(z), A2(z), 0], C (z)Q = [C1(z), C2(z), 0]

where the columns of the matrices [A1(z), A2(z)] and [C1(z), C2(z)] are linearly
independent over R and where the columns of A1(z) and C1(z) do not belong
to the linear column space over R of B(z), while those of A2(z) and C2(z) do.
Since, by assumption, the columns of the matrices [A(z), B(z)] and [C(z), B(z)]
span the same linear space over R , then so do the columns of matrices A1(z)
and C1(z). Hence, there exists a non-singular matrix X1 over R of appropriate
dimensions such that

A1(z)X1 = C1(z)

and matrices X2 and Y2 over R, such that

B (z)X2 = [C2(z), 0], B (z)Y2 = [A2(z), 0].
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Thus, we have that

[A1(z), (A2(z), 0 ), B(z)]

[

D 0
Y I

]

= [C1(z), (C2(z), 0 ), B(z)]

where

D = diag[X1, I], Y = [0, (X2 − Y2)].

From the above it follows that the pair of matrices over R

X = T diag[X1, I ]Q
−1

Y = [0, (X2 − Y2)]Q
−1

solves (1) and the matrix X is non-singular. This completes the proof.

Lemma 3 Let δι for i = 1,2, . . . .,m be non-negative integers. Also let L be the
class of all matrices C(z) over R[z] with dimensions m x q and row degrees less
than or equal to δι for i=1,2, . . . ., m. Let V be the linear space over R spanned
by the columns of C(z). Then

1. The linear space V consists of all polynomial vectors v(z) with dimension
m× 1 and row degrees less than or equal to δι for i=1,2, . . . ., m.

Proof. Let ci(z) for i =1, 2, . . . ., q be the columns of the matrix C(z) from
a class L. Let v(z) be an element of V . Since by, assumption, V is the linear
space over R spanned by the columns of C(z), we have that

v(z) = Σq
i=1λιci(z)

where λι for i = 1, 2, · · · , q are arbitrary real numbers. Since, by assumption,
C(z) is a matrix from a class L, the statement 1 of Lemma 3 follows directly
from the above relationship and the proof is complete.

Lemma 4 Let δι for i = 1,2, . . . .,m be non-negative integers. Also let L be the
class of all matrices C(z) over R[z] with dimensions m× q and row degrees less
than or equal to δι for i=1,2, . . . ., m. Further, let B(z) be a fixed polynomial
matrix over R[z]. Let also V be the linear space over R of all polynomial vectors
v(z) with dimension m × 1 and row degrees less than or equal to δι for i=1,2,
. . . ., m. Then, the columns of the matrix [C(z, B(z)] span V for every matrix
C(z) from a class L if and only if the following condition holds:

1. The columns of the matrix B(z) span V.

Proof. Since, by assumption, L is the class of all matrices C(z) over R[z] with
dimensions m x q and row degrees less than or equal to δι for i =1,2, . . . ., m,
we assume, without any loss of generality, that

C (z) = K,

where K is an nonzero matrix over R. Then, the columns of the matrix [K,B(z)]
span V if and only if the columns of the matrices B(z) span V and hence the
proof is complete.
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Lemma 5 The equation (1) has a solution for X and Y over R for every poly-
nomial matrix C(z) from a class L, only if the following condition holds:

1. The columns of the matrix [A(z), B(z)] span V.

Proof. Let equation (1) have a solution for X and Y over R for every poly-
nomial matrix C(z) from a given class L. Then, from Lemma 1, we have that
the linear space over R, spanned by the columns of C(z), is a subspace of the
linear space over R spanned by the columns of [A(z), B(z)]. Since, by Lemma
3, the columns of C(z) span V , we conclude that the columns of [A(z), B(z)]
span also V and thus the proof is complete.

3. Main results

The theorem that follows is the main result of this paper and gives the necessary
and sufficient conditions for the equation (1) to have a solution for X and Y

over R with X being non-singular, for every polynomial matrix C(z) from a
given class L.

Theorem 1 Let k = q. Then, equation (1) has a solution for X and Y over
R with X being non-singular for every polynomial matrix C(z) from a class L if
and only if the following condition holds:

1. The columns of the matrix B(z) span V.

Proof. Let equation (1) have a solution for X and Y over R with X being
non-singular for every polynomial matrix C(z) from a given class L. Since, by
assumption, the class L consists of all matrices C(z) over R[z] with dimensions
m× q and row degrees less than or equal to δι for i = 1, 2, . . . ,m, we have from
Lemma 5 that the columns of the matrix [A(z), B(z)] span V . Equation (1) can
be rewritten as follows

[A (z) , B (z)]

[

X 0
Y I

]

= [C(z), B(z)].

Since X is non-singular, the transformation matrix in the above relationship is
also non-singular and therefore the columns of the matrix [A(z), B(z)] span the
same linear space over R as the columns of [C(z), B(z)]. Since the columns of
the matrix [A(z), B(z)] span V , the columns of [C(z), B(z)] span also V . From
Lemma 4 we have that the columns of [C(z), B(z)] span V for every polynomial
matrix C(z) over R[z] from a given class L if and only if the columns of B(z)
span V . This is condition 1 of the Theorem.

Let condition 1 of the Theorem hold. Since the columns of the matrix B(z)
span V , the columns of the matrices [A(z), B(z)] and [C(z), B(z)] span also
V and by Lemma 2, equation (1) has a solution for X and Y over R with X

being non-singular for every polynomial matrix C(z) from a given class L. This
completes the proof.
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Remark 1 In this paper an explicit necessary and sufficient condition has been
established for the equation (1) to have a solution for X and Y over R with
X being non-singular, for every polynomial matrix C(z) from a given class L

and an algorithm is given for the computation of the solution. This clearly
demonstrates the originality of the contribution of Theorem 1, provided in this
paper, with respect to existing results, see Kucera and Zagalak (1992), where
restrictive sufficient conditions have been established for the solution of the same
problem.

4. Computational algorithm

Given:A (z) , B (z) and δι for i = 1, 2, . . . ,m.

Find: X and Y over R with X being non-singular, for every polynomial
matrix C(z) from a given class L.

Step 1: Check condition (1) of Theorem 1. If this condition is satisfied go
to Step 2. If condition of Theorem 1 is not satisfied go to, Step 3.

Step 2: Let L be an arbitrary non-singular real matrix of size q × q. Set
X = L. Since δι for i = 1, 2, . . . ,m, are the row degrees of [A(z), B(z)], we
conclude that the row degrees of the matrix A (z) are less than or equal to δι
for i = 1, 2, . . . ,m. Since the matrix L is non-singular, the row degrees of the
matrix A (z)L are less than or equal to δι for i = 1, 2, . . . .,m, and therefore
the row degrees of the matrix [C(z) − A (z)L] are also less than or equal to
δι for i = 1, 2, . . . .,m. Hence, condition (1) of Theorem 1 guarantees that the
following linear equation

B (z)Y = C (z)− A (z)L

has a solution for Y over R for every non-singular matrix L over R and for every
polynomial matrix C(z) from a given class L. Solve the above equation and find
Y .

Step 3: Our problem has no solution.

5. A numerical example

Consider equation (1) with matrices A(z), B(z) and C(z) given by

A(z) =

[

z 0
0 z

]

B(z) =

[

z 1 0 0
0 0 z 1

]

C(z) =

[

z 1
2 z

]

.

The row degrees of the polynomial matrix [A(z), B(z)] are δι = 1 for i = 1, 2.
Our aim is to find the solution to equation (1) for X and Y over R with X

being non-singular. We shall follow the Steps of the computational algorithm
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given in the preceding section. Let b1(z) and b2(z) be the rows of the polynomial
matrix B(z). In order to execute Step 1, write

b1(z) = [1 0 0 0]z + [0 1 0 0], b2(z) = [0 0 1 0]z + [0 0 0 1].

Of the coefficients of the matrix polynomials b1(z) and b2(z), we form the
matrix









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1









.

Since the above matrix is non-singular, we conclude that the columns of the
matrix B(z) span V (see paragraph after equation (11) in Section 2). Hence,
by Theorem 1, equation (1) has a solution for X and Y over R with X being
non-singular.

To carry out Step 2 set

X = L =

[

1 0
0 1

]

,

form the matrix

C (z)−A (z)X =

[

0 1
2 0

]

and solve the equation

B (z)Y = C (z)− A (z)L

or, equivalently, the equation
[

z 1 0 0
0 0 z 1

]

Y =

[

0 1
2 0

]

.

The solution for Y of this equation is given by

Y=









0 0
0 1
0 0
2 0









.

6. Conclusions

In this paper, an explicit necessary and sufficient condition has been established
for the equation (1) to have a solution, for X and Y over the field of real
numbers, with X being non-singular for every polynomial matrix C(z) from
a given class. Furthermore, a procedure is given for the computation of the
solution. We believe that the results of this paper may be useful in the study
of some problems in the area of linear implicit systems.
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