PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of annealing conditions on changes of the structure and selected properties of Al88Y7Fe5 and Al88Y6Fe6 alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Al-Y-Fe amorphous and nanocrystalline alloys are characterized by a unique collection of diverse properties that are influenced by various factors, including heat treatment. In this paper, the effect of heat treatment on the structural changes and selected properties of Al-Y-Fe metallic glasses in the as-spun state is investigated. The structure of the Al88Y7Fe5 and Al88Y6Fe6 alloys was examined by X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The corrosion resistance of the samples was characterized using polarization tests in a 3.5% NaCl solution at 25 °C. The effect of sodium chloride on the surface was studied with scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The magnetic properties of Al-based alloys were explored using a vibrating sample magnetometer (VSM). It was revealed that the tested alloys show better properties after annealing than in the as-spun state. The annealing of the Al88Y7Fe5 and Al88Y6Fe6 alloys in the temperature range of 200 to 300 °C improved the magnetic properties and corrosion resistance of these materials. After 3,600 s, the better EOCP values were recorded for the Al88Y6Fe6 and Al88Y7Fe5 alloys after annealing at 300 °C and 200 °C, adequately. On the basis of the polarization tests, it was concluded that the electrochemical properties are better for Al88Y6Fe6 alloys after annealing at 300 °C.
Rocznik
Strony
art. no. e144614
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network, Institute of Non-Ferrous Metals, Sowinskiego 5, 44-100 Gliwice, Poland
  • Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
  • Department of Physics, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Czestochowa, Poland
Bibliografia
  • [1] L.M. Zhang et al., “Thermally induced structure evolution on the corrosion behavior of Al-Ni-Y amorphous alloys,” Corrosion Sci., vol. 144, pp. 172–183, 2018, doi: 10.1016/j.corsci.2018.08.046.
  • [2] S.Y. Kim et al., “High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors,” Sci. Rep., vol. 8, p. 1090, 2018, doi: 10.1038/s41598-018-19337-7.
  • [3] R. Jindal, V.S. Raja, M.A. Gibson, M.J. Styles, T.J. Bastow, and C.R. Hutchinson, “Effect of annealing below the crystallization temperature on the corrosion behavior of Al–Ni–Y metallic glasses,” Corrosion Sci., vol. 84, pp. 54–65, 2014, doi: 10.1016/j.corsci.2014.03.015.
  • [4] J.H. Perepezko, M. Gao, and J.Q. Wang, “Nanoglass and nanocrystallization reactions in metallic glasses,” Front. Mater., vol. 8, 663862, 2021, doi: 10.3389/fmats.2021.663862.
  • [5] C. Fan, X. Yue, A. Inoue, C.T. Liu, X. Shen, and P.K Liaw, “Recent topics on the structure and crystallization of Al-based glassy alloys,” Mat. Res., vol. 22, no. 1, p. e20180619, 2019, doi: 10.1590/1980-5373-MR-2018-0619.
  • [6] S. Zhang et al., “Crystallization behavior and corrosion resistance of Al86Ni10Zr4 amorphous alloy under different annealing treatment conditions,” J. Non-Cryst. Solids, vol. 593, pp. 121775, 2022, doi: 10.1016/j.jnoncrysol.2022.121775.
  • [7] A.G. Igrevskaya, A.I. Bazlov, N.Yu. Tabachkova, D.V. Louzguine, and V.S. Zolotorevskiy, “Influence of annealing at various temperatures on the structure and hardness of amorphous ribbons of the Al85Y8Ni5Co2 alloy,” Russ. J. Non-Ferrous. Met., vol. 59, no. 5, pp. 520–526, 2018, doi: 10.3103/S1067821218050061.
  • [8] K. Khrushchyk, L. Boichyshyn, and V. Kordan, “Influence of annealing on mechanical properties of alloys of Al-REM-Ni (Fe),” Mater. Today: Proc., vol. 62, pp. 5739–5744, 2022, doi: 10.1016/j.matpr.2022.02.343.
  • [9] A. Aronin, D. Matveev, E. Pershina, V. Tkatch, and G. Abrosimova, “The effect of changes in Al-based amorphous phase structure on structure forming upon crystallization,” J. Alloy. Compd., vol. 715, pp. 176–183, 2017, doi: 10.1016/j.jallcom.2017.04.305.
  • [10] H. Yang, L. Luo, Y. Shen, and C. Li, “Glass forming ability and thermal stability of Al–Y–Fe amorphous alloys,” J. Shenyang. Univ. Technol., vol. 36, no. 5, pp. 498–502, 2014, doi: 10.7688/j.issn.1000-1646.2014.05.04.
  • [11] K. Saksl, P. Jóvári, H. Franz, “Atomic structure of Al88Y7Fe5 metallic glass,” J. Appl. Phys., vol. 97, 113507, 2005, doi: 10.1063/1.1914955.
  • [12] S.I. Mudry, O. Kulyk Yu, and L.M. Boichyshyn, “Nanocrystallization of amorphous alloy Al87Ni8Dy5 induced by heat treatment,” Mater. Today: Proc., vol. 62, pp. 5800–5804, 2022, doi: 10.1016/j.matpr.2022.03.493.
  • [13] L.M. Boichyshyn, Kh.I. Khrushchyk, M.O. Kovbuz, O.M. Hertsyk, and T.H. Hula, “Specific features of the transition of amorphous Al87REM5Ni8(Fe) alloys into the crystalline state under the influence of temperature,” Mater. Sci., vol. 55, no. 1, pp. 17–26, 2019, doi: 10.1007/s11003-019-00246-7.
  • [14] R. Dunlap, K. Dini, G. Stroink, G. Collins, and S. Jha, “An Fe Mössbauer effect study of metastable Al86Fe14 prepared by rapid solidification,” Hyperfine Interact., vol. 28, pp. 963–966, 1986, doi: 10.1007/BF02061604.
  • [15] R. Dunlap, M. Yewondwossen, and D. Lawther, “Mössbauer effect studies of amorphous A1-Y-Ni-Fe alloys,” J. Non-Cryst. Solids, vol. 156–158, pp. 192–195, 1993, doi: 10.1016/0022-3093(93)90161-P.
  • [16] E. Fazakas, S. Kane, K. Lazar, L. Varga, “Mössbauer study of rapidly solidified Al-Fe based amorphous alloys,” Hyperfine Interact., vol. 189, pp. 119–123, 2009, doi: 10.1007/s10751-009-9936-5.
  • [17] S. Kaloshkin et al., “Composed phases and microhardness of aluminium-rich aluminium-iron alloys obtained by rapid quenching, mechanical alloying and high pressure torsion deformation,” Mater. Trans., vol. 43, pp. 2031–2038, 2002, doi: 10.2320/matertrans.43.2031.
  • [18] E. Kuzmann, A. Vertes, A. Griger, and V. Stefiiniay, “Mossbauer and X-ray study of rapidly quenched and mechanically alloyed AlFe alloys,” Hyperfine Interact., vol. 92, pp. 943–947, 1994, doi: 10.1007/BF02065716.
  • [19] G. Kalvius, F. Wagner, I. Halevy, and J. Gal, “The magnetism of rare earth intermetallics RFe4Al8,” Hyperfine Interact., vol. 151/152, pp. 195–207, 2003, doi: 10.1023/B:HYPE.0000020411. 32596.a6.
  • [20] J. Waerenborgh et al., “Y–Fe–Al ternary system: partial isothermal section at 1070 K. Powder X-ray diffraction and Mossbauer spectroscopy study,” J. Alloy. Compd., vol. 323–324, pp. 78–82, 2001, doi: 10.1016/S0925-8388(01)00990-2.
  • [21] N.R. Tailleart, R. Huang, T. Aburada, D.J. Horton, and J.R. Scully, “Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al-Co-Ce alloy,” Corrosion Sci., vol. 59, pp. 238–248, 2012, doi: 10.1016/j.corsci.2012.03.012.
  • [22] R. Babilas, A. Bajorek, M. Spilka, W. Łoński, and D. Szyba, “Electrochemical characterization of Al84Ni9Y7 metallic glass after annealing process,” J. Non-Cryst. Solids, vol. 518, pp. 24–35, 2019, doi: 10.1016/j.jnoncrysol.2019.04.042.
  • [23] R. Babilas, K. Młynarek-Żak, W. Łoński, D. Łukowiec, T. Warski, and A. Radoń, “Study of crystallization mechanism of Al.-based amorphous alloys by in-situ high temperature X-ray diffraction method,” Sci. Rep., vol. 12, 5733, 2022, doi: 10.1038/s41598-022-09640-9.
  • [24] L.M. Boichyshyn, O.M. Hertsyk, M.O. Kovbuz, T.H. Pereverzewa, and B.Ya. Kotur, “Properties of amorphous alloys of Al-REM-Ni and Al-REM-Ni-Fe systems with nanocrystalline structure,” Mater. Sci., vol. 48, no. 4, pp. 555–559, 2013, doi: 10.1007/s11003-013-9537-y.
  • [25] P.J. Yin et al., “Effect of Au addition on intermetallics precipitation tendency and repassivation of Al88Fe5Y7 glassy alloy,” Int. J. Electrochem. Sci., vol. 12, pp. 1288–1305, 2017, doi: 10.20964/2017.02.15.
  • [26] Y. Zhang et al., “Correlation between glasses forming ability and density of states for the micro-alloying Al-based metallic glasses,” J. Alloy. Compd., vol. 826, 154237, 2020, doi: 10.1016/j.jallcom.2020.154237.
  • [27] D.N. Binh, N.T.H. Oanh, N.H.Viet, “The effect of Ni and Ti additions on the glass forming ability and magnetic properties of Al-Fe-Y alloy prepared by mechanical alloying,” J. Non-Cryst. Solids, vol. 583, pp. 121–478, 2022, doi: 10.1016/j.jnoncrysol.2022.121478.
  • [28] A. Chrobak, B. Kotur, T. Mika, and G. Haneczok, “Effect of Gd and Fe doping on magnetic properties of Al87Y5Ni8 amorphous alloy,” J. Magn. Magn. Mater., vol. 321, no. 18, pp. 2767–2771, 2009, doi: 10.1016/j.jmmm.2009.04.005.
  • [29] G. Li,W.Wang, X. Bian, L.Wang, J. Zhang, R. Li, and T. Huang, “Influences of similar elements on glass forming ability and magnetic properties in Al-Ni-La amorphous alloy,” J. Mater. Sci. Technol., vol. 26, no. 2, pp. 146–150, 2010, doi: 10.1016/S1005-0302(10)60024-2.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca3ceab8-ca9d-478a-9546-ca29fcde3c30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.