PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

PVD surface treatment of heat-treated cast aluminium alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Main purpose of the paper is results share of AlSi9Cu and AlSi9Cu4 cast aluminium alloys treatment investigation. Processing was performed using CAE-PVD method in order to obtain gradient coatings. Design/methodology/approach: CAE-PVD method was used to obtain gradient coatings on AlSi9Cu and AlSi9Cu4 cast aluminium alloys after heat treatment. Investigation of resulting material was performed using SEM, TEM, GDOS, ball-on-disk wear resistance test and microhardness test. Findings: The investigations presented in this paper reveal that it was possible to successfully deposit Cr/CrN/CrN, Cr/CrN/TiN, and Ti/Ti(C,N)/(Ti,Al)N nano-crystalline coatings on Al-Si-Cu aluminium substrate using CAE-PVD method. Investigations of the coatings reveal a microstructure that adhere tightly to the aluminium substrate without any visible delamination but with visible transition zone between the investigated layers and the substrate material. Research limitations/implications: There is need for further research activity in field of nanocomposite films and coatings that should concentrate on following problems: controlled grain size of coatings/films, development of hybrid coatings with unique physical and functional properties, e.g. nanophase biomaterials. Practical implications: Better understanding of mechanisms that proceed during CAE-PVD treatment of AlSi9Cu and AlSi9Cu4 cast aluminium alloys. Creation of material, that, thanks to the treatment, can be coated with layer characterized by gradient chemical composition with unique physical and functional properties (e.g. higher microhardness or corrosion resistance, lower friction coefficient, etc.) that can be successfully applied within aerospace and automotive industry or even on field of biomedical applications with use of nanophase biomaterials or nano-crystalline amorphous materials. Originality/value: Cr/CrN/CrN, Cr/CrN/TiN, and Ti/Ti(C,N)/(Ti,Al)N nano-crystalline coatings were deposited on Al-Si-Cu aluminium substrate. They are characterized by visible transition zone (gradient) between the investigated layers and the substrate material.
Słowa kluczowe
Rocznik
Strony
79--88
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Avedesian and H. Baker (Eds.), ASM Specialty Handbook: Aluminium and Aluminium Alloys, ASM International, The Materials Information Society, USA, 1999.
  • [2] T. Taski, A.D. Dobrzańska-Danikiewicz, K. Labisz, W. Matysiak, Long-term development perspectives of selected groups of engineering materials used in the automotive industry, Archives of Metallurgy and Materials 59/4 (2014) 1729-1740.
  • [3] T. Tokarski, Thermo-mechanical processing of rapidly solidified 5083 aluminium alloy - structure and mechanical properties, Archives of Metallurgy and Materials 59/1 (2015) 177-180.
  • [4] M.S. Weglowski, S. Dymek, Microstructural modification of cast aluminium alloy AlSi9Mg via friction modified processing, Archives of Metallurgy and Materials 57/1 (2012) 71-78.
  • [5] L.A. Dobrzański, M. Krupiski, K. Labisz, B. Krupiska, A. Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum 638-642 (2010) 475-480.
  • [6] M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Elsevier Science, 2010.
  • [7] K. Mao, Y. Sun, A. Bloyce, and T. Bell, Surface coating effects on contact stress and wear: an approach of surface engineering design and modelling, Surface Engineering 26/1-2 (2010) 142-148.
  • [8] M. Pellizzari, High temperature wear and friction behaviour of nitrided, PVD-duplex and CVD coated tool steel against 6082 Al alloy, Wear 271 (2011) 2089-2099.
  • [9] J. Eriksson, M. Olsson, Tribological testing of commercial CrN, (Ti,Al)N and CrC/C PVD coatings - Evaluation of galling and wear characteristics against different high strength steels, Surface and Coatings Technology 205 (2011) 4045-4051.
  • [10] I. Endler, M. Höhn, M. Herrmann, H. Holzschuh, R. Pitonak, S. Ruppi, H. van den Berg, H. Westphal, L. Wilde, Aluminum-rich TiAlCN coatings by Low Pressure CVD, Surface and Coatings Technology 205 (2010) 1307-1312.
  • [11] L.A. Dobrzański, L.W. Łukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201/1-3 (2008) 310-314.
  • [12] K. Lukaszkowicz, L.A. Dobrzański, G. Kokot, P. Ostachowski, Characterization and properties of PVD coatings applied to extrusion dies, Vacuum 86 (2012) 2082-2088.
  • [13] K. Lukaszkowicz, J. Sondor, K. Balin, J. Kubacki, Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process, Applied Surface Science 312/1 (2014) 126-133.
  • [14] M.W. Richert, A. Mazurkiewicz, J.A. Smolik, The deposition of WC-Co coatings by EBPVD technique, Archives of Metallurgy and Materials 57/2 (2012) 511-516.
  • [15] W. Gębarowski, S. Pietrzyk, Influence of the cathodic pulse on the formation and morphology of oxide coatings on aluminium produced by plasma electrolytic oxidation, Archives of Metallurgy and Materials 58/1 (2013) 241-245.
  • [16] T. Taski, Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 59/3 (2013) 165-174.
  • [17] T. Taski, K. Labisz, K. Lukaszkowicz, A. Śliwa, K. Gołombek, Characterisation and properties of hybrid coatings deposited onto magnesium alloys, Surface Engineering 30/12 (2014) 927-932.
  • [18] M. Staszuk, L.A. Dobrzański, T. Taski, W. Kwaśny, M. Musztyfaga, The effect of PVD and CVD coating structures on the durability of sintered cutting edges, Archives of Metallurgy and Materials 59/1 (2014) 269-274. - - -
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca3cb1c3-ef38-4a37-8615-ceea8d576094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.