PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Changes of Nitrogen and Organic Compound During Co-Composting of Disposable Diaper and Vegetable Wastes on Aerobic Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of disposable diapers is increasing every year, increasing generated diaper wastes every year. In Surabaya, diaper wastes have become an important issue when they are not treated properly. These diaper wastes will end up in water bodies and cause pollution. One of the technologies that can be used to treat diaper wastes is composting. Disposable diaper wastes consist of high lignocellulose and C content. It is necessary to mix diaper wastes and other wastes with high N content as a co-substrate, so that the optimum C/N ratio of composting can be achieved. In this research, vegetables wastes were used. The Objective of the research was to determine the effect of vegetable wastes adding as a co-substrate in composting of disposable diapers and volatile solid (VS), C-organic, and Total Nitrogen (TN) content changed during the composting process. The research was carried out with three variables mixtures of diaper wastes and vegetable wastes. Two control consist of 100% diaper wastes and 100% vegetables wastes. The Total weight of raw materials was 10 kg for each reactor. The composting process is carried out aerobically with a composting time of 60 days. The results showed that vegetable wastes have the potential to be used as a co-substrate for diaper wastes. The content of C-organic, VS and total nitrogen decreased. All of the parameters include C/N ratio meet the Indonesian Standard of compost.
Rocznik
Strony
228--234
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Departement of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
  • Departement of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
  • Departement of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
  • Departement of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
Bibliografia
  • 1. Ahn H.K., Richard T.L., Glanville T.D. 2008. Optimum moisture levels for biodegradation of mortality composting envelope materials. Waste Management, 28, 1411–1416.
  • 2. Baldwin S., Odio M.R., Haines S.L., O’Connor R.J., Englehart J.S., Lane A.T. 2001. Skin Benefi ts From Continuous Topical Administration of A Zinc Oxide/Petrolatum Formulation by A Novel Disposable Diaper. Journal of the European Academy of Dermatology and Venereology, 15(1), 5–11.
  • 3. Bernal M.P., Alburquerque J.A., Moral R. 2009. Composting of Animal Manures and Chemical Criteria for Compost Maturity Assessment. A review. Bioresource Technology, 100(22), 5444–5453.
  • 4. Bolado-Rodriguez S., Toquero C., Martin-Juarez J., Travaini R., Garcia-Encina, P.A. 2016. Effect of Thermal, Acid, Alkaline and Alkaline-Peroxide Pretreatments on The Biochemical Methane Potential and Kinetics of The Anaerobic Digestion of Wheat Straw and Sugarcane Bagasse. Journal of Bioresource Technology, 201, 182–190.
  • 5. Cabanas-Vargas D.D., Sanchez-Monedero M.A., Urpilainen S.T., Stentiford E.I. 2005. Assessing The Stability and Maturing of Compost at Large Scale Plants. Artículo de Investigación, Ingeniería, 9–2, 25–30.
  • 6. Campitelli P., Ceppi S. 2008. Chemical, Physical and Biological Compost and Vermicompost Characterization: A Chemometric Study. Journal of Chemometrics and Intelligent Laboratory System, 90, 64–71.
  • 7. Chen L., De Haro M.M., Moore A., Falen C. 2011. The Composting Process: Dairy Compost Production and Use in Idaho CIS 1179. University of Idaho.
  • 8. Colon J., Ruggieri L., Gonzales A., Puig I., Sanchez A. 2011. Possibilities of Composting Disposable Diapers With Municipal Solid Wastes. Waste Management and Research, 29(3), 249–259.
  • 9. Duan R., Fedler C.B. 2015. Preliminary Field Study of Soil TKN in A Wastewater Land Application System. Journal of Ecological Engineering, 83, 1–4.
  • 10. Duong T.T.T., Penfold C., Marschner P. 2012. Differential Effects of Composts on Properties of Soils With Different Textures. Biology and Fertility of Soils, 48(6), 699–707.
  • 11. El Haggar S.M. 2005. Food Waste Recycling, Composting. Environmental Solutions. Elsevier Publishing, Chapter, 13, 313–400.
  • 12. Esparza I., Jimenez-Moreno N., Bimbela F., Ancín-Azpilicueta C., Gandía L. M. 2020. Fruit and vegetable waste management: Conventional and emerging approaches. Journal of Environmental Management, 265, 110510, 1–18.
  • 13. Guo N., Zhang. Xie H.J., Tan L.R., Luo J.N., Tao Z.Y., Wang S.G. 2017. Effects of the Food-toMicroorganism (F/M) Ratio on N2O Emissions in Aerobic Granular Sludge Sequencing Batch Airlift Reactors. Water, 9, 477–486.
  • 14. Jiang J.S., Huang Y.M., Liu X.L., Huang H. 2014. The Effects of Apple Pomace, Bentonite and Calcium Superphosphate on Swine Manure Aerobic Composting. Waste Management, 34, 1595–1602.
  • 15. Kim E.Y., Hong Y.K., Lee C.H., Oh T.K., Kim S.C. 2018. Effect of organic compost manufactured with vegetable waste on nutrient supply and phytotoxicity. Applied Biological Chemistry, 61(5), 509–521.
  • 16. Kumar M., Ou Y-L., Lin J-G. 2010. Co-composting of green waste and food waste at low C/N ratio. Waste Management, 20, 602–609.
  • 17. Lemus G.R., Lau A.K. 2002. Biodegradation of Lipidic Compounds in Synthetic Food Wastes During Composting. Canadian Biosystem Engineering, 44(6), 33–39.
  • 18. Li M.X., He X.S., Tang J., Li X., Zhao R., Tao Y.Q., Wang C., Qiu Z.P. 2021. Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting. Chemosphere, 264, 128549.
  • 19. Makan A., Assobhei O., Mountadar M. 2013. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Iranian Journal of Environmental Health Sciences & Engineering, 10(3).
  • 20. Meena A.L., Karwal M., Dutta D., Mishra R.P. 2021. Composting: Phases and Factors Responsible for Efficient and Improved Composting. Agriculture and Food: e-Newsletter, 1, 85–90.
  • 21. Musa A.M., Ishak C.F., Karam D.S., Jaafar N.M. 2020. Effects of Fruit and Vegetable Wastes and Biodegradable Municipal Wastes Co-Mixed Composts on Nitrogen Dynamics in an Oxisol. Agronomy, 10, 1609–1624.
  • 22. Pavi S., Kramer L.E., Gomes L.P., Miranda L.A. 2017. Biogas Production from Co-Digestion of Organic Fraction of Municipal Solid Waste and Fruit and Vegetable Waste. Bioresource Technology, 228, 362–367.
  • 23. Ponsá S., Gea T., Alerm L., Cerezo J., Sánchez A.. 2008. Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Management, 28(12), 2735–2742.
  • 24. Rastogi M., Nandal M., Khosla B. 2020. Microbes as vital additives for solid waste composting. Heliyon, 6, e03343.
  • 25. Sanchez O.J., Ospina DA, Montoya S. 2017. Compost Supplementation with Nutrients and Microorganisms in Composting Process. Waste Management, 69, 136–153.
  • 26. Tang J., Atsushi S., Qixing, Arata K. 2007. Effect of Temperature on Reaction Rate and Microbial Community in Composting of Cattle Manure with Rice Straw. Journal of Bioscience and Bioengineering, 104(4), 321–328.
  • 27. Tchobanoglous G., Theisen H., Virgil S. Integrated Solid Waste Management. Second Edition, New York, 1993.
  • 28. Winker M., Vinnerås B., Muskolus A., Arnold U., Clemens J. 2009. Fertiliser products from new sanitation systems: Their potential values and risks. Bioresource Technology, 100, 4090–4096.
  • 29. Yuanyuan W., Wang C., Liu X., Hailing M., Wu J., Zuo J., Wang K. 2016. A New Methode of Two-Phase Anaerobic Digestion for Fruit and Vegetable Waste Treatment. Bioresource Technology, 211(1), 16–23.
  • 30. Zhang J., Chen G., Sun H., Zhou S., Zou G. 2016. Straw Biochar Hastens Organic Matter Degradation and Produces Nutrient-rich Compost. Bioresource Technology, 200, 876–883.
  • 31. Zhang L., Sun X. 2014. Changes in Physical, Chemical, and Microbiological Properties During the Two-Stage Co-composting of Green Waste with Spent Mushroom Compost and Biochar. Bioresource Technology, 171, 274–284.
  • 32. Zhu N.W. 2007. Effect of Low Initial C/N Ratio on Aerobic Composting of Swine Manure with Rice Straw. Bioresource Technology, 98(1), 9–13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca3b60c8-f802-4f80-a444-5f8695ef4df6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.