Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work presents the results of numerical research that was conducted on the flow of axisymmetric nanofluids through a nonlinearly stretched sheet in the radial direction while a magnetic field influence was present. This model of a nanofluid demonstrates the presence of both the Brownian motion and the thermophoretic nanoparticle diffusion effects simul-taneously. When calculating the flow, both the Dufour effect and the Soret effect are taken into consideration. The conservation of energy, species, and momentum is represented by the equations for this process. The transformation of partial differential equations can be achieved by utilizing similarity conversions. These equations take into account all of the thermophysical char-acteristics. Therefore, a feasible solution may be found in the Runge-Kutta approach. Graphic representations of the profiles for velocity, temperature, and concentration, along with evaluations of a few other parameters, are shown When compared to some of the earlier studies, the R-K code's validity is shown to be beyond question. Brownian motion((Nb) and Dufour effect(Du) lead to an increase in the temperature gradient. The results provide some insight into how the nanofluid is used in various com-mercial endeavors.
Rocznik
Tom
Strony
32--46
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mathematics, Nizam College (A), Osmania University, INDIA
autor
- Department of Mathematics, Government Degree College, Sherilingampally Telangana, INDIA
autor
- Department of Mathematics, JNTUH College of Engineering, Science & Technology, INDIA
Bibliografia
- [1] Choi S.U.S. and Estman J.A. (1995): Enhancing thermal conductivity of fluids with nanoparticles.– ASME,FED231/MD vol.66, pp.99-105.
- [2] Buongiorno J. (2006): Convective transport in nanofluids.– ASME, J. Heat Transf., vol.128, No.3, pp.240-250,https://doi.org/10.1115/1.2150834.
- [3] Alkahtani B, Abel M.S. (2015): MHD boundary layer flow over a nonlinear stretching sheet in a nanofluid withconvective boundary condition.– J. Comput. Theor. Nanosci., vol.12, No.12, pp.6020-6027,https://doi.org/10.1166/jctn.2015.4753.
- [4] Abd Elazem N.Y. (2021): Numerical results for influence the flow of MHD nanofluids on heat and mass transferpast a stretched surface.– Nonlinear Eng.,vol.10, No.1, pp.28-38, https://doi.org/10.1515/nleng-2021-0003.
- [5] Yashkun U, Zaimi K, Abu Bakar NA, Ishak A. and Pop I. (2021): MHD hybrid nanofluid flow over a permeablestretching/shrinking sheet with thermal radiation effect.– Int. J. Numer. Methods Heat Fluid Flow, vol.31, No.3,pp.1014-1031, https://doi.org/10.1108/HFF-02-2020-0083.
- [6] Patel H.R., Mittal A.S. and Darji R.R. (2019): MHD flow of micropolar nanofluid over a stretching shrinking sheetconsidering radiation.– Int. Commun. Heat Mass Transf., vol.108, article 104322,https://doi.org/10.1016/j.icheatmasstransfer.2019.104322.
- [7] Alotaibi H., Althubiti S., Eid M.R. and Mahny K.L. (2021): Numerical treatment of MHD flow of Casson nanofluidvia convectively heated non-linear extending surface with viscous dissipation and suction/injection effects.– CMC-Computers, Materials & Continua, vol.66, No.1, pp.229-245, http://doi.org/10.32604/cmc.2020.012234.
- [8] Ali B., Naqvi R.A., Haider A., Hussain D. and Hussain S. (2020): Finite element study of MHD impacts on therotating flow of Casson nanofluid with the double diffusion Cattaneo-Christov heat flux model.– Mathematics, vol.8,No.9, p.1555, http://doi.org/10.3390/math8091555.
- [9] Rasool G., Shafiq A. and Baleanu D. (2020): Consequences of Soret-Dufour effects, thermal radiation and binarychemical reaction on Darcy-Forchheimer flow of nanofluids.– Symmetry, vol.12, No.1, p.1421,http://doi.org/10.3390/sym12091421.
- [10] Zhang L., Bhatti M.M., Michaelides E.E. and Ellahi R. (2024): Characterizing quadratic convection andelectromagnetically induced flow of couple stress fluids in microchannels.– Qual. Theory Dyn. Syst., vol.23, No.1,p.35,. https://doi.org/10.1007/s12346-023-00883-z.
- [11] Usman A.H., Shah Z., Humphries U.W., Kumam P. and Thounthong P. (2020): Soret, Dufour and activation energyeffects on double diffusive convective couple stress micropolar nanofluid flow in a Hall MHD generator system.–AIP Adv., vol.10, No.7, article 075010, https://doi.org/10.1063/5.0014897.
- [12] Ahmed B., Akbar F., Ghaffari A., Ullah Khan S., Khan M.I. and Dharmendar Reddy Y. (2022): Soret and Dufouraspects of the third-grade fluid due to the stretching cylinder with the Keller box approach.– Waves RandomComplex Media, vol.32, https://doi.org/10.1080/17455030.2022.2085891.
- [13] Bejawada S.G. and Yanala D.R. (2021): Finite element Soret Dufour effects on an unsteady MHD heat and masstransfer flow past an accelerated inclined vertical plate.– Heat Transfer, vol.50, No.8, pp.8553-8578,https://doi.org/10.1002/htj.22290.
- [14] Hayat T., Khan M.I., Waqas M. and Ahmed A. (2017): Stagnation point flow of hyperbolic tangent fluid with Soretand Dufour effects.Results Phy., vol.7, pp.2711-2717, https://doi.org/10.1016/j.rinp.2017.07.014.
- [15] Uwanta I.J., Asogwa K.K. and Ali U.A. (2012): MHD fluid flow over a vertical plate with Dufour and Soret effects.Int. J. Comput. Appl., vol.45, No.2, pp.8-16, http://doi.org/10.5120/6750-8998.
- [16] Mandal B., Bhattacharyya K., Banerjee A., Kumar Verma A. and Kumar Gautam A. (2020): MHD mixed convectionon an inclined stretching plate in Darcy porous medium with Soret effect and variable surface conditions.–Nonlinear Engineering, vol.9, No.1, pp.457-469, https://doi.org/10.1515/nleng-2020-0029.
- [17] Srinivasacharya D., B. Mallikarjuna B. and Bhuvanavijaya. R. (2015): Soret and Dufour effects on mixed convectionalong a vertical wavy surface in a porous medium with variable properties.– Ain Shams Eng. J., vol.6, No.2, pp.553-564, http://doi.org/10.1016/j.asej.2014.11.007.
- [18] Kumar A., Singh R., Seth G.S. and Tripathi R. (2018): Soret effect on transient magnetohydrodynamic nanofluidflow past a vertical plate through a porous medium with second order chemical reaction and thermal radiation.–Int. J. Heat Tech., vol.36, No.4, pp.1430-1437, https://doi.org/10.18280/ijht.360435.
- [19] Bhatti M.M., Sarris I., Michaelides E.E. and Ellahi R. (2024): Sisko fluid flow through a non-Darcian micro-channel: An analysis of quadratic convection and electro-magneto-hydrodynamics.– Therm. Sci. Eng. Prog., vol.50,p.102531, https://doi.org/10.1016/j.tsep.2024.102531.
- [20] Arulmozhi S., Sukkiramathi K., Santra S.S., Edwan R., Fernandez-Gamiz U. and Noeiaghdam S. (2022): Heat andmass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving verticalplate.– Results in Engineering, vol.14, p.100394., https://doi.org/10.1016/j.rineng.2022.100394.
- [21] Nawaz M. and Hayat T. (2014): Axisymmetric stagnation-point flow of nanofluid over a stretching surface.–Advances in Applied Mathematics and Mechanics, vol.6, No.2, pp.220-232.,https://doi.org/10.4208/aamm.2013.m93.
- [22] Mustafa M., Khan J.A., Hayat T. and Alsaedi A. (2015): Analytical and numerical solutions for axisymmetric flowof nanofluid due to non-linearly stretching sheet.– International Journal of Non-Linear Mechanics, vol.71, pp.22-29, https://doi.org/10.1016/j.ijnonlinmec.2015.01.005.
- [23] Ali B., Naqvi R.A., Nie Y., Khan S.A., Sadiq M.T., Rehman A.U. and Abdal S. (2020): Variable viscosity effectson unsteady MHD an axisymmetric nanofluid flow over a stretching surface with thermo-diffusion: Fem approach.–Symmetry, vol.12, No.2, p.234, https://doi.org/10.3390/sym12020234.
- [24] Faiz M., Habib D., Siddique I., Awrejcewicz J., Pawłowski W., Abdal S. and Salamat N. (2022): Multiple slip effectson time dependent axisymmetric flow of magnetized Carreau nanofluid and motile microorganisms.– ScientificReports, vol.12, No.1, p.14259, https://doi.org/10.1038/s41598-022-18344-z.
- [25] Mahabaleshwar U.S., Maranna T., Perez L.M. and Nayakar S.R. (2023): An effect of magnetohydrodynamic andradiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking/stretching surface.– Journal ofMagnetism and Magnetic Materials, vol.571, p.170538, https://doi.org/10.1016/j.jmmm.2023.170538.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca37adde-def1-4b76-993b-75cba005539f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.