PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hyers-Ulam stability of a nonautonomous semilinear equation with fractional diffusion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the Hyers-Ulam stability of a nonautonomous semilinear reaction-diffusion equation. More precisely, we consider a nonautonomous parabolic equation with a diffusion given by the fractional Laplacian. We see that such a stability is a consequence of a Gronwall-type inequality.
Wydawca
Rocznik
Strony
269--276
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Universidad Autónoma de Aguascalientes, Departamento de Matemáticas y Física, Av. Universidad No. 940, Aguascalientes, Ags., México
Bibliografia
  • [1] Claudi Alsina and Roman Ger, On some inequalities and stability results related to exponential function, J. Inequal. Appl. 2(1998), 373-380, DOI: 10.1155/S102558349800023X.
  • [2] Soon-Mo Jung, Byungbae Kim, and Themistocles M. Rassias, On the Hyers-Ulam stability of a system of Euler differential equations of first order, Tamsui Oxf. J. Math. Sci. 24(2008), no. 4, 381-388.
  • [3] Gwang Hi Kim and Yang-Hi Lee, Stability of an additive-quadratic-quartic functional equation, Demonstr. Math. 53(2020), 1-7, DOI: 10.1515/dema-2020-0001.
  • [4] Nicolaie Lungu and Dorian Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl. 385(2012), 86-91, DOI: 10.1016/j.jmaa.2011.06.025.
  • [5] Agostino Prástaro and Themistocles M. Rassias, Ulam stability in geometry of PDE’s, Nonlinear Funct. Anal. Appl. 8(2003), no. 2, 259-278.
  • [6] Rabha W. Ibrahim, Ulam-Hyers stability for Cauchy fractional differential equation in the unit disk, Abstr. Appl. Anal. 2012(2012), 1-10, DOI: 10.1155/2012/613270.
  • [7] Zhan-Peng Yang, Tian-Zhou Xu, and Min Qi, Ulam-Hyers stability for fractional differential equations in quaternionic analysis, Adv. Appl. Clifford Algebras 26(2016), 469-478, DOI: 10.1007/s00006-015-0576-3.
  • [8] Luis Caffarelli and Juan L. Vázquez, Regularity of solutions of the fractional porous medium flow with exponent 1/2, Algebra i Analiz 27(2015), no. 3, 125-156.
  • [9] Aroldo Perez and Jose Villa, Blow-up for a system with time-dependent generators, ALEA7(2010), 207–215.
  • [10] Juan L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S7(2014), no. 4, 857–885, DOI: 10.3934/dcdss.2014.7.857.
  • [11] Daniela Marian, Sosina Anamaria Ciplea, and Nicole Lungu, Ulam-Hyers stability of a parabolic partial differential equation, Demonstr. Math. 52(2019), no. 1, 475–481, DOI: 10.1515/dema-2019-0040.
  • [12] Shunmugaperumal Tamilvanan, E. Thandapani, and John M. Rassias, Hyers-Ulam stability of first order differential equation via integral inequality, in: G. Anastassiou and J. Rassias (eds.), Frontiers in Functional Equations and Analytic Inequalities, Springer, Cham, 2019.
  • [13] Mateusz Kwaśnicki, Ten equivalent definitions of fractional Laplace operator, Fract. Calc. Appl. Anal. 20(2017), no. 1, 7–51, DOI: 10.1515/fca-2017-0002.
  • [14] Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, New Jersey, 1970.
  • [15] Kôsaku Yosida, Functional Analysis, Springer, New York, 1980.
  • [16] John M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57(1989), no. 3, 268–273, DOI: 10.1016/0021-9045(89)90041-5.
  • [17] John R. Giles, Introduction to the Analysis of Metric Spaces, Australian Mathematical Society, Lecture Series, no. 3, Cambridge University Press, Cambridge, 1987.
  • [18] Gerald B. Folland, Real Analysis, Modern Techniques and Their Applications, John Wiley & Sons, Ney York, 1999.
  • [19] Jérôme Droniou and Ciril Imbert, Fractal first-order partial differential equations, Arch. Rational Mech. Anal. 182(2006), 299–331, DOI: 10.1007/s00205-006-0429-2.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca3399b1-53f8-4adf-a5b2-2fa157d1b5bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.