PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microscopically based calibration of the cohesive model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the calibration of a cohesive zone model in front of a crack is presented. It is based on the behavior of a cell containing a void. The sizes of the cell and the void are assumed to be representative for a chosen material. The cell is located at the crack tip. The loading conditions of the cell take into account the constraint level ahead of the crack tip. The influence of the constraint on the cohesive model parameters is investigated.
Rocznik
Strony
477--485
Opis fizyczny
Bibliogr. 24 poz. rys., tab.
Twórcy
  • Kielce University of Technology, Kielce, Poland
Bibliografia
  • 1. Al-Ani A., Hancock J.W., 1991, J-Dominance of short cracks in tension and bending, Journal of Mechanics and Physics of Solids, 39, 1, 23-43
  • 2. Barenblatt G.I., 1959, The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially symmetric cracks, Applied Mathematics and Mechanics (PMM), 23, 622-636
  • 3. Brocks W., Cornec A., Scheider I., 2003, Computational aspects of nonlinear fracture mechanics, [In:] Comprehensive Structural Integrity – Numerical and Computational Methods, Milne I., Ritchie R.O., Karihaloo B. (Eds.), Oxford: Elsevier, 3, 127-209
  • 4. Cornec A., Scheider I., Schwalbe K.H., 2003, On the practical application of the cohesive model, Engineering Fracture Mechanics, 70, 1963-1987
  • 5. Dugdale D.S., 1960, Yielding of steel sheets containing slits, Journal of Mechanics and Physics of Solids, 8, 100-108
  • 6. Faleskog J., Gao X., Shih C. F., 1998, Cell model for nonlinear fracture analysis – I. Micromechanics calibration, International Journal of Fracture, 89, 355-373
  • 7. Gałkiewicz J., 2014, The simulation of void growth along curvilinear crack front, Key Engineering Materials, 598, 63-68
  • 8. Gao X., Faleskog J., Shih C. F., 1998, Cell model for nonlinear fracture analysis – II. Fractureprocess calibration and verification, International Journal of Fracture, 89, 375-398
  • 9. Gurson A.L., 1977, Continuum theory of ductile rupture by void nucleation and growth – Part I. Yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, 99, 2-15
  • 10. Li V.C., Ward R.J., 1989, A novel testing technique for post-peak tensile behaviour of cementitious materials, [In:] Fracture Toughness and Fracture Energy – Testing Methods For Concrete and Rocks, Mihashi H., Takahashi H., Wittmann F.H. (Edits.), Rotterdam: A.A. Balkema Publishers, 183-195
  • 11. Neimitz A., 2008, The jump-like crack growth model, the estimation of fracture energy and JR curve, Engineering Fracture Mechanics, 75, 236-252
  • 12. O’Dowd N.P., Shih S.F., Dodds, Jr. R.H., 1995, The role of geometry and crack growth on constraint and implications for ductile/brittle fracture, [In:] Constraint Effects in Fracture Theory and Applications, M. Kirk, A. Bakker (Edits.), 2, ASTM STP 1244, American Society for Testing and Materials, Philadelphia
  • 13. Panasyuk W.W., 1968, Limit State of Brittle Solids Containing Cracks (in Russian), Kiev, Naukova Dumka
  • 14. Park K., Paulino G.H., Roesler J.R., 2009, A unified potential-based cohesive model of mixed-mode fracture, Journal of the Mechanics and Physics of Solids, 57, 891-908
  • 15. Scheider I., Brocks W., 2003, Simulation of cup-cone fracture using the cohesive model, Engineering Fracture Mechanics, 70, 1943-1961
  • 16. Scheider I., Schodel M., Brocks W., Schonfeld W., 2006, Crack propagation analyses with CTOA and cohesive model: Comparison and experimental validation, Engineering Fracture Mechanics, 73, 252-263
  • 17. Sorensen B.F., Jacobsen T.K., 2003, Determination of cohesive laws by the J integral approach, Engineering Fracture Mechanics, 70, 1841-1858
  • 18. Turon A., Camanho P.P., Costa J., Davila C.G., 2006, A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mechanics of Materials, 38, 11, 1072-1089
  • 19. Tvergaard V., 1981, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, 17, 4, 389-407
  • 20. Tvergaard V., Hutchinson J.W., 1992, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, Journal of Mechanics and Physics of Solids, 40, 6, 1377-1397
  • 21. Tvergaard V., Needleman A., 1984, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, 32, 1, 157-169
  • 22. Williams, M.L., 1957, On the stress distribution at the base of a stationary crack, ASME Journal of Applied Mechanics, 24, 111-114
  • 23. Xia L., Shih C.F., 1995, Ductile crack growth – I. A numerical study using computational cells with microstructurally-based length scales, Journal of the Mechanics and Physics of Solids, 43, 2, 233-259
  • 24. Xia L., Shih C.F., 1995, Ductile crack growth - II. Void nucleation and geometry effects on macroscopic fracture behavior, Journal of the Mechanics and Physics of Solids, 43, 12, 1953-1981
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca2fd85b-165d-4f62-a0c5-b5bcf7cf02d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.