PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Basic features of the laser acceleration of charged particles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to study the acceleration of the charged particles by the laser beam in the range outside the resonance conditions. The studies have been limited in the subresonance region since in order to achieve the resonance acceleration a very high constant magnetic field is needed. Design/methodology/approach: The studies are carried out using the analytical derivations of the particles dynamics and its kinetic energy. The evolution of the acceleration process in time has been studied. The presented illustrations enabled interpretation of the obtained equations. Findings: The kinetic energy of the particle periodically achieves the maximal energy. Its value and the distance between the subsequent maxima rise with the increasing magnetic field or the laser beam intensity. However, these parameters of oscillating energy decrease with the decreasing wavelength. Research limitations/implications: Limits in the energy of accelerated particles are caused by the limits of the available at present the laser beam energy and the static magnetic field intensity. Practical implications: The authors of this paper believe that the presented results of the studies will help the designing of the experimental studies. It has been shown the way of achieving the high energy particles without the application of a very high magnetic field. Originality/value: The value of the paper is the analytical derivation of the parameters describing the oscillatory shape of the particles energy and numerical analysis its course. According to the authors best knowledge there are no performed such analysis of the acceleration process.
Rocznik
Strony
412--420
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Department of Technical Physics, Technical University of Radom, ul. J. Malczewskiego 20A, 26-600 Radom, Poland
autor
  • Department of Technical Physics, Technical University of Radom, ul. J. Malczewskiego 20A, 26-600 Radom, Poland
Bibliografia
  • [1] J.D. Lindl, P. Amendt, R.L. Berger, S. Gail Glendinning, S.H. Glenzer, S.W. Haan, R.L. Kauffman, O.L. Landen, L.J. Suter, The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Physics of Plasmas 11 (2004) 339-49.
  • [2] C. Benedetti, P. Londrillo, T.V. Liseykina, A. Macchi, A. Sgattoni G. Turchetti, Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 606/1-2 (2009) 89-93.
  • [3] K.W.D. Ledingham, P. McKenna, R.P. Singhal, Applications for Nuclear Phenomena Generated by UltraIntense Lasers, Science 300 (2003) 1107-1111.
  • [4] J. Fan, W. Luo, E. Fourkal, T. Lin, J. Li, I. Veltchev, C.-M. Ma, Shielding design for a laser-accelerated proton therapy system, Physics in Medicine and Biology 52 (2007) 3913-3930.
  • [5] T. Tajima, G. Mourou, Zettawatt-exawatt lasers and their applications in ultrastrong-field physics, Physical Review Special Topics Accelerators and Beams 5 (2002) 031301-031309, http://arxiv.org/PS_cache/physics/pdf/0111/0111091v1.pdf.
  • [6] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, Fast ignition by intense laser-accelerated proton beams, Physical Review Letters 86 (2001) 436-439.
  • [7] Y.I. Salamin, Z. Herman, C.H. Keitel, Direct high-power laser acceleration of ions for medical applications, Physical Review Letters 100 (2008) 155004-155008 http://arxiv.org/PS_cache/arxiv/pdf/0804/0804.3719v1.pdf.
  • [8] D.N. Gupta, H. Suk, Energetic electron beam generation by laser-plasma interaction and its application for neutron production, Journal of Applied Physics 101 (2007) 1149081-114908-5.
  • [9] B.A. Remington, D. Arnett, R.P. Drake, H. Takabe, Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers, Science 284 (1999) 1488-1493.
  • [10] A. Dubik, M.J Małachowski, Acceleration of charged particles in laser and maser beams, Monography 144, printing in Technical University of Radom, 2010.
  • [11] P. Baum, A.H. Zewail, Attosecond electron pulses for 4D diffraction and microscopy, Proceedings of the National Academy of Science 104 (2007) 18409-18414.
  • [12] M. Borghesi, J. Fuchs, O. Willi, Laser-accelerated high-energy ions: state of-the-art and applications, Journal of Physics: Conference Series (2007) 74-80.
  • [13] F. Wang, B. Shen, X. Zhang, X. Li, Z. Jin, Electron acceleration by a propagating laser pulse in vacuum, Physics of Plasmas 14 (2007) 083102.
  • [14] K.P. Singh, Laser induced electron acceleration in vacuum, Physics of Plasmas 11 (2004) 1164-1167.
  • [15] K.P. Singh, V.K. Tripathi, Laser induced electron acceleration in a tapered magnetic wiggler, Physics of Plasmas 11 (2004) 743-746.
  • [16] X.P. Zhang, Q. Kong, Y.K. Ho, P.X. Wang, Field structure and electron acceleration in a slit laser beam, Laser and Particle Beams 28 (2010) 21-26.
  • [17] V.I. Berezhiani, N.L. Shatashvili, On the “vacuum heating” of plasma in the field of circularly polarized laser beam, Europhysics Letters 76 (2006) 70-73.
  • [18] J.J. Xu, Q. Kong, Z. Chen, P.X. Wang, D. Lin and Y.K. Ho, Vacuum laser acceleration in circularly polarized fields, Journal of Physics D: Applied Physics 40 (2007) 2464-2471.
  • [19] S.Y. Zhang, Accurate correction field of circularly polarized laser and its acceleration effect, Journal of Atomic and Molecular Sciences1 (2010) 308-317.
  • [20] Y.I. Salamin, Electron dynamics in circularly-polarized laser and uniform electric fields: acceleration in vacuum, Physics Letters A 283 (2001) 37-43.
  • [21] K.P. Singh, Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum, Journal of Applied Physics 100 (2006) 044907-1-044907-4.
  • [22] K.P. Singh, D.N. Gupta, V. Sajal, Electron energy enhancement by a circularly polarized pulse in vacuum, Laser and Particle Beams 27 (2009) 635-642.
  • [23] D.N. Gupta, C.M. Ryu, Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum, Physics of Plasmas 12 (2005) 053103-1-053103-5.
  • [24] H.Y. Niu, X.T. He, B. Qiao and C.T. Zhou, Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses, Laser and Particle Beams 26 (2008) 51-59.
  • [25] D.N. Gupta, H. Suk, M.S. Hur, Laser electron acceleration: Role of an additional long-wavelength electromagnetic wave and a magnetic field, Journal of the Korean Physical Society 54/1 (2009) 376-380.
  • [26] M.J. Małachowski, A. Dubik, Difference in acceleration of electrons, protons and deuterons in a laser beam, Journal of Achievements in Materials and Manufacturing Engineering 41 (2010) 82-90.
  • [27] X.C. Ge, R.X. Li, Z.Z. Hu, Phase dependence of relativistic electron dynamics and emission spectra in the superposition of an ultraintense laser field and a strong uniform magnetic field, Physical Review E 68 (2003) 056501-056508.
  • [28] H. Liu, X.T. He, S.G. Chen, Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields, Physical Review E 69 (2004) 066409-1-066409-7.
  • [29] A. Dubik, M.J. Małachowski, Basic features of a charged particle dynamics in a laser beam with static axial magnetic field, Opto-Electronics Review 17/4 (2009) 275-286.
  • [30] A. Dubik, M.J. Małachowski, Resonance acceleration of a charged particle in a laser beam and static magnetic field, Journal of Technical Physics 50/2 (2009) 75-98.
  • [31] Z.-M. Sheng, L.-W. Zhu, M.Y. Yu, Z.-M. Zhang, Electron acceleration by intense laser pulse with echelon phase modulation, New Journal of Physics 12 (2010) 1-8.
  • [32] K.P. Singh, Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum, Physical Review E 69 (2004) 056410-1-056410-5.
  • [33] S. Huang, F. Wu, Electron acceleration by a focused laser pulse in a static magnetic field, Physics of Plasmas 14 (2007) 123107.
  • [34] H.K. Avetissian, K.H.V. Sedarkian, Nonlinear interaction of particles with strong laser pulses in a magnetic undulator, Physical Review Special Topics - Accelerators and Beams 13 (2010) 081301-1-081301-6.
  • [35] L.A. Rivlin, Laser acceleration of neutrons (physical foundations), Quantum Electronics 40 (2010) 460-463.
  • [36] K.W.D. Ledingham, W. Galser, Laser-driven particle and photon beams and some applications, New Journal of Physics 12 (2010) 1-66.
  • [37] E. Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, L. Laschinsky, E. Lessmann, M. Nicolai, J. Pawelke, C. Richter, R. Sauerbrey, H.P. Schlenvoigt, M. Baumann, Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons, Medical Physics 37 (2010) 1392-1400.
  • [38] M.J. Małachowski, A. Dubik, Impact of the chirping effect on charged particle acceleration in laser radiation, Journal of Achievements in Materials and Manufacturing Engineering 48 (2011) 87-96.
  • [39] K.P. Singh, V. Sajal, Quasimonoenergetic collimated electrons from the ionization of nitrogen by a chirped intense laser pulse, Physics of Plasmas 16 (2009) 043113-1043113-8.
  • [40] D.N. Gupta, H. Suk, Electron acceleration to high energy by using two chirped lasers, Laser and Particle Beams 25 (2007) 31-36.
  • [41] D.N. Gupta, H.J. Jang, H. Suk, Combined effect of tight-focusing and frequency-chirping on laser acceleration of an electron in vacuum, Journal of Applied Physics 105 (2009) 106110-1-106110-3.
  • [42] S. Kumar, M. Yoon, Electron acceleration by a chirped circularly polarized laser pulse in vacuum in the presence of a planar magnetic wiggler, Physica Scripta 77 (2008) 025404-025411.
  • [43] F. Sohbatzadeh, S. Mirzanejhad, H. Aku, S. Shouri, Chirped Gaussian laser beam parameters in paraxial approximation, Physics of Plasmas 17 (2010) 083108-1-083108-5.
  • [44] J.-X. Li, W.-P. Zang, J.-G. Tian, Electron acceleration in vacuum induced by tightly focused chirped laser pulse, Applied Physics Letters 96 (2010) 031103-1-031103-3.
  • [45] Y.I. Salamin, Fields of a tightly focused radially polarized laser beam: the truncated series versus the complex-source-point spherical wave representation, New Journal of Physics 11 (2009) 033009-033017.
  • [46] A. Dubik, Movement of charge particles in electromagnetic field, Monograph 101 Published at Radom University of Technology, Radom 2007 (in Polish).
  • [47] A. Dubik, M.J. Małachowski, Exact solution of relativistic equations for charged particle motion in laser beam with static axial magnetic field (in Polish) Biuletyn Wojskowej Akademii Technicznej LVIII 1 (2009) 7-32.
  • [48] W.B. Colson, S.K. Ride, A Laser Accelerator, Applied Physics 20 (1979) 61-65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca2d0656-961b-4b9f-8c1e-7bca067a317d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.