Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, the use of spark plasma sintering on Ti6Al4V powder was investigated. Sintering experiments were conducted at the temperature of 1000°C for 5 min. The simultaneous effect of compaction pressures of 5, 25 and 50 MPa and heating rates of 200, 300 and 400°C/min on the structure, density, microhardness, elastic modulus and compressive strength were analyzed and ranged between 4.14 and 4.43 g/cm3, 293 and 373 HV0.05, 116 and 142 GPa, 1169 and 1414 MPa respectively. With increasing compaction pressure, the effect of an increase in grain size was observed. The obtained results show that very good mechanical properties can be achieved using spark plasma sintering at a rapid heating rate and already with the 25 MPa compaction pressure. The best results of microhardness (373 HV0.05) and compressive strength (1414 MPa) with an elastic modulus of 138 GPa were obtained by the compacts sintered under the compaction pressure of 50 MPa and at the heating rate of 300°C/min.
Czasopismo
Rocznik
Tom
Strony
702--707
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Metal Forming Institute, 14 Jana Pawla II Street, 61-139 Poznan, Poland
autor
- Poznan University of Technology, Institute of Mechanical Technology, 3 Piotrowo Street, 60-965 Poznan, Poland
autor
- Metal Forming Institute, 14 Jana Pawla II Street, 61-139 Poznan, Poland
Bibliografia
- [1] Y. Quan, F. Zhang, H. Rebl, B. Nebe, Ol. Kessler, E. Burkel, Ti6Al4V foams fabricated by spark plasma sintering with post-heat treatment, Materials Science and Engineering: A 565 (2013) 118–125.
- [2] S.G. Tabrizi, S.A. Sajjadi, A. Babakhani, W. Lu, Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite, Materials Science and Engineering: A 624 (2015) 271–278.
- [3] X. Li, Q. Zhou, S. Zhao, J. Chen, Effect of pulse current on bending behavior of Ti6Al4V alloy, Procedia Engineering 81 (2014) 1799–1804.
- [4] M. Wojtaszek, T. Śleboda, Design and verification of thermochemical parameters of P/M Ti6Al4V alloy forging, Journal of Alloys and Compounds 615 (1) (2014) 546–550.
- [5] Z. Doni, A.C. Alves, F. Toptan, J.R. Gomes, A. Ramalho, M. Buciumeanu, L. Palaghian, F.S. Silva, Dry sliding and tribocorrosion behavior of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys, Materials & Design 52 (2013) 47–57.
- [6] P. Vlack, F. Cerny, J. Drahokoupil, J. Sepitka, Z. Tolde, The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature, Journal of Alloys and Compounds 620 (2015) 48–54.
- [7] H. Yanjun, L. Jinxu, L. Jianchong, L. Shukui, Z. Qinghe, Ch. Xingwang, Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique, Materials & Design 65 (2015) 94–97.
- [8] F. Zhang, M. Reich, O. Kessler, E. Burkel, The potential of rapid cooling spark plasma sintering for metallic materials, Materials Today 16 (5) (2013) 192–197.
- [9] M. Eriksson, M. Radwan, Z. Shen, Spark plasma sintering of WC, cemented carbide and functional graded materials, International Journal of Refractory Metals and Hard Materials 36 (2013) 31–37.
- [10] L. Liu, Z. Hou, B. Zhang, F. Ye, Z. Zhang, Y. Zhou, A new heating route of spark plasma sintering and its effect on alumina ceramic densification, Materials Science and Engineering: A 559 (2013) 462–466.
- [11] F. Despang, A. Bernhardt, A. Lode, Th. Hanke, D. Handtrack, B. Kieback, M. Gelinsky, Response of human bone marrow stomal cells to a novel ultra-fine-grained and dispersion- strengthened titanium-based material, Acta Biomaterialia 6 (3) (2010) 1006–1013.
- [12] D. Garbiec, F. Heyduk, T. Wiśniewski, The influence of sintering temperature on the density, microstructure and strength properties of the Ti6Al4V alloy produced using the spark plasma sintering method (SPS), Metal Forming 23 (4) (2012) 265–275.
- [13] D. Garbiec, F. Heyduk, Sintering of titanium and hydroxyapatite by spark plasma sintering, Metallurgy – Metallurgical Engineering News 79 (8) (2012) 569–574.
- [14] K. Crosby, L.L. Shaw, C. Estournes, G. Chevallier, A.W. Fliflet, M.A. Imam, Enhancement in Ti-6Al-4V sintering via nanostructured powder and spark plasma sintering, Powder Metallurgy 57 (2) (2014) 147–154.
- [15] Y.F. Yang, M. Qian, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy, Elsevier Inc., 2015 219–235.
- [16] http://asm.matweb.com/search/SpecificMaterial.asp? bassnum=MTP641 (12.04.16).
- [17] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution, Journal of Alloys and Compounds 583 (2014) 404–409.
- [18] R. Dabrowski, The Kinetics of phase transformations during continuous cooling of the Ti6Al4V alloy from the single-phase b range, Archives of Metallurgy and Materials 56 (3) (2011) 703–707.
- [19] I. Cadoff, J.P. Nielsen, Titanium-carbon phase diagrams, Transactions of the American Institute of Mining Engineers 197 (1953) 248–252.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca29b9c6-83c9-4f05-b3dd-5e35ed1fd840