PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of deep learning for military vehicle identification in SAR imagery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial intelligence approaches, especially those involving deep learning, have recently become integral to object detection, as they can autonomously identify relevant features in visual datasets. The identification of military equipment, including mechanized vehicles, is crucial for threat detection and minimizing the impact of enemy actions by enabling countermeasures to be taken as quickly as possible after the threat is detected. The application of deep learning, particularly convolutional neural networks (CNN), is a highly effective tool for image processing and pattern recognition in visual data. These networks utilize convolutional layers to automatically extract features from images, making them ideal for analyzing synthetic aperture radar (SAR) imagery. Active sensor technologies like SAR are essential for object recognition due to their capability to operate in all weather conditions, both day and night.
Rocznik
Tom
Strony
251--268
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Institute of Navigation, Polish Air Force University, Dywizjonu 303 no 35 Street, 08-521 Dęblin, Poland
  • Faculty of Aviation Division, Polish Air Force University, Dywizjonu 303 no 35 Street, 08-521 Dęblin, Poland
Bibliografia
  • 1. Zhao Zhong-Qiu, Zheng Peng, Xu Shou-Tao, Wu Xindong. 2019. „Object detection with deep learning: A review”. IEEE Transactions on Neural Networks and Learning Systems, 30(11): 3212-3232. DOI: 10.1109/TNNLS.2018.2876865.
  • 2. Zhu Xiao Xiang, Tuia Devis, Mou Lichao, Xia Gui-Song, Zhang Liangpei, Xu Feng, Fraundorfer Friedrich. 2017. „Deep learning in remote sensing: A comprehensive review and list of resources”. IEEE Geosci. Remote Sens. Mag. 5(4): 8-36. DOI: 10.1109/MGRS.2017.2762307.
  • 3. Zhang Tianwen, Zeng Tianjiao, Zhang Xiaoling. 2023. Synthetic Aperture Radar (SAR) Meets Deep Learning. MDPI. ISBN: 978-3-0365-6382-4.
  • 4. Majumder Uttam, Blasch Erik, Garren David. 2020. Deep Learning for Radar and Communications Automatic Target Recognition. Artech House. ISBN: 978-1630816377.
  • 5. Schumacher Rolf, Rosenbach Karlhans. 2004. „ATR of battlefield targets by SAR classification results using the public MSTAR dataset compared with a dataset by QinetiQ, U.K.''. In: RTO Sensors and Electronics Technology Panel Symposium; Research and Technology Organisation (NATO): Neuilly-sur-Seine Cedex, France, 2004. 31: 1-12.
  • 6. Schumacher Rolf, Schiller Joachim. 2005. „Non-cooperative target identification of battlefield targets - classification results based on SAR images". In: IEEE International Radar Conference: 9-12 May 2005, Arlington, USA.
  • 7. Chen Sizhe, Wang Haipeng, Xu Feng, Jin Ya-Qiu. 2016. „Target classification using the deep convolutional networks for SAR images''. IEEE Trans. Geosci. Remote Sens. 54(8): 4806-4817. DOI: 10.1109/TGRS.2016.2551720.
  • 8. Furukawa Hidetoshi. 2018. „Deep learning for end-to-end automatic target recognition from synthetic aperture radar imagery''. IEICE Tech. Rep. 117(403): 35-40. DOI: doi.org/10.48550/arXiv.1801.08558.
  • 9. Shang Ronghua, Wang Jiaming, Jiao Licheng, Stolkin Rustam, Hou Biao, Li Yangyang. 2018. „SAR targets classifcation based on deep memory convolution neural networks and transfer parameters”. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 11(8): 2834-2846. DOI: 10.1109/JSTARS.2018.2836909.
  • 10. Zhang Fan, Hu Chen, Yin Qiang, Li Wei, Li Heng-Chao, Hong Wen. 2017. „Multi-aspect aware bidirectional LSTM networks for synthetic aperture radar target recognition''. IEEE Access 5: 26880-26891. DOI: 10.1109/ACCESS.2017.2773363.
  • 11. Bai Xueru, Xue Ruihang, Wang Li, Zhou Feng. 2019. „Sequence SAR image classification based on bidirectional convolution-recurrent network'', IEEE Trans. Geosci. Remote Sens. 57(11):9223-9235. DOI: 10.1109/TGRS.2019.2925636.
  • 12. Jang Ohtae, Jo Sangho, Kim Sungho. 2022. „A comparative survey on SAR image segmentation using deep learning”. In: 22nd International Conference on Control, Automation and Systems (ICCAS 2022)BEXCO, 27 November – 01 December 2022, Busan, Korea.
  • 13. LeCun Yann, Bengio Yoshua, Hinton Geoffrey. 2015. „Deep Learning”. Natur52(215): 436-444. DOI: 10.1038/nature14539.
  • 14. Ross Timothy, Worrell Steven, Velten Vincent, Mossing John, Bryant Michael Lee. 1998. „Standard SAR ATR evaluation experiments using the MSTAR public release data set”. In: Proceedings of the Algorithms for Synthetic Aperture Radar Imagery V, 14-17 April 1998, Orlando, USA.
  • 15. Lewis Benjamin, Scarnati Theresa, Sudkamp Elizabeth, Nehrbass John, Rosencrantz Stephen, Zelnio Edmund. 2019. „A SAR dataset for ATR development: The Syntheticand Measured Paired Labeled Experiment (SAMPLE)”. SPIE Conf. Algorithms Synth. Aperture Radar Imag. XXVI: 14-18 April 2019, Baltimore, USA.
  • 16. Camus Benjamin, Le Barbu Corentin, Monteux Eric. 2022. „Robust SAR ATR on MSTAR with Deep Learning Models trained on Full Synthetic MOCEM data”. In: Proc. CAID’22, 16-17 November 2022, Rennes, France.
  • 17. Goodfellow Ian, Bengio Yoshua, Courville Aaron. 2016. Deep learning, Massachusetts: MIT Press. ISBN: 9780262035613.
  • 18. Ossowski Stanisław. 2020. Sieci neuronowe do przetwarzania informacji. [In Polish: Neural networks for information processing]. Publishing house of the Warsaw University of Technology. ISBN:978-83-7814-923-1.
  • 19. Giusti Alessandro, Cireşan Dan, Masci Jonathan, Gambardella Luca, Schmidhuber Jürgen. 2013. „Fast image scanning with deep max-pooling convolutional neural networks”. In: Proceedings of the 2013 IEEE International Conference on Image Processing, 15-18 September 2013, Melbourne, Australia.
  • 20. Agarwal Tushar, Sugavanam Nithin, Ertin Emre. 2020. „Sparse Signal Models for Data Augmentation in Deep Learning ATR”. In: Proceedings of the 2020 IEEE Radar Conference (RadarConf20), 21-25 September 2020, Florence, Italy.
  • 21. Lang Ping, Fu Xiongjun, Martorella Marco, Dong Jian, Qin Rui, Meng Xianpeng, Xie Min. 2020. „A Comprehensive Survey of Machine Learning Applied to Radar Signal Processing”. ArXiv abs/2009.13702.
  • 22. Ioffe Sergey, Szegedy Christian. 2015. „Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International Conference on Machine Learning, 6-11 July, 2015, Lille, France.
  • 23. Horzyk Adrian. 2013. Sztuczne systemy skojarzeniowe i asocjacyjna sztuczna inteligencja. [In Polish: Artificial associative systems and associative artificial intelligence]. EXIT Publishing House. ISBN: 978-83-7837-022-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca289349-aafd-496d-847a-8e0b47b708ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.