PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-Efficiency Cooling System Using Additive Manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we propose a cooling structure manufactured using a specialized three-dimensional (3D) printing design method. A cooling performance test system with complex geometry that used a thermoelectric module was manufactured using metal 3D printing. A test model was constructed by applying additive manufacturing simulation and computational fluid analysis techniques, and the correlation between each element and cooling efficiency was examined. in this study, the evaluation was conducted using a thermoelectric module base cooling efficiency measurement system. The contents were compared and analyzed by predicting the manufacturing possibility and cooling efficiency, through additive manufacturing simulation and computational fluid analysis techniques, respectively.
Twórcy
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
  • Pusan National University, Busan, 46241, Republic of Korea
autor
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
autor
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
autor
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
autor
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
autor
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
autor
  • Pusan National University, Busan, 46241, Republic of Korea
autor
  • Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
Bibliografia
  • [1] M.K. Thompson et al, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Annuals 65, 737-760 (2016).
  • [2] M. Kumke, H. Watschke, T. Vietor, A new methodological framework for design for additive manufacturing, Virtual and Physical Prototyping 11, 3-19 (2016).
  • [3] L. Frizziero and et al., Design for Additive Manufacturing and Advanced Development Methods Applied to an Innovative Multifunctional Fan, Additive Manufacturing: Breakthoughs in Research and Practic 34 (2020).
  • [4] F. F. Wang, E. Parker, 3D printed micro-channel heat sink design considerations, 2016 International Symposium on 3D Power Electronics Integration and Manufacturing 16320350 (2016).
  • [5] Chunlei Wan and et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dischalcogenide TiS2, Nature Materials 14, 622-627 (2015).
  • [6] M. Helou, S. Kara, Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing 31, 243-261 (2018).
  • [7] C. Dimitrios et al., Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions, Additive Manufacturing 18, 101720 (2020).
  • [8] D. Yong et al., Thermoelectric materials and devices fabricated by additive manufacturing, Vacuum 178, 109384 (2020).
  • [9] S. Ning et al., 3D-printing of shape-controllable thermoelectric devices with enhanced output performance, Energy 195, 116892 (2020).
  • [10] S. Emrecan et al., Thermo-mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part-scale deformations, Progress in Additive Manufacturing 465-478 (2019)
Uwagi
1. This work was supported by the Research Fund of the Korea Institute of Materials Science (KIMS) (PNK7940).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca2844a9-dc4b-4421-9c28-2e97ec796389
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.