PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chronic liver disease and cirrhosis, that can lead to liver failure, are major public health issues, with liver transplantation as the only effective treatment. However, the limited availability of transplantable organs has spurred research into alternative therapies, including bioartificial livers. To date, liver hybrid support devices, using porcine hepatocytes or hepatoma-derived cell lines, have failed to demonstrate efficacy in clinical trials. Here, for the first time, we report the construction of a model of biologically active function block of bioartificial liver based on a hollow fiber bioreactor populated with genetically modified hepatic cells. For comprehensive comparison the culturing of hepatic cells was carried out in both static and dynamic conditions in a medium that flowed through porous polysulfone capillaries. The most crucial parameters, such as cell viability, glucose consumption, albumin secretion and urea production, were analyzed in static conditions while glucose usage and albumin production were compared in dynamic cell cultures. This model has the potential to improve the development of bioartificial liver devices and contribute to the treatment of patients with impaired liver function.
Twórcy
  • Department of Hybrid and Analytical Microbiosystems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Department of Hybrid and Analytical Microbiosystems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Department of Hybrid and Analytical Microbiosystems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Department of General, Transplant & Liver Surgery, University Medical Center, Medical University of Warsaw, Poland
  • Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Department of Hybrid and Analytical Microbiosystems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Ks. Trojdena 4 st. 02-109, Warsaw, Poland
Bibliografia
  • [1] Marcellin P, Kutala BK. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018;38 (Suppl 1):2-6. https://doi.org/10.1111/liv.13682.
  • [2] Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet 2010;376 (9736):190-201. https://doi.org/10.1016/S0140-6736(10)60274-7.
  • [3] Kadyk LC, Collins LR, Littman NJ, Millan MT. Proceedings: Moving toward cellbased therapies for liver disease. Stem Cells Transl Med 2015;4(3):207-10. https://doi.org/10.5966/sctm.2014-0276.
  • [4] Meirelles Júnior RF erreir., Salvalaggio P, Rezende MBd, Evangelista AS, Guardia BD ell., Matielo CEL, et al. Liver transplantation: history, outcomes and perspectives. Einstein (Sao Paulo) 2015;13(1):149-52. https://doi.org/10.1590/S1679-45082015RW3164.
  • [5] García Martínez JJ, Bendjelid K. Artificial liver support systems: what is new over the last decade? Ann Intensive Care 2018;8:109. https://doi.org/10.1186/s13613-018-0453-z.
  • [6] Stange J. Extracorporeal liver support. Organogenesis 2011;7(1):64–73. https://doi.org/10.4161/org.7.1.14069.
  • [7] Kribben A, Gerken G, Haag S, Herget-Rosenthal S, Treichel U, Betz C, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology 2012;142(4):782-789.e3. https:// doi.org/10.1053/j.gastro.2011.12.056.
  • [8] Bañares R, Nevens F, Larsen FS, Jalan R, Albillos A, Dollinger M, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology 2013;57(3): 1153-62. https://doi.org/10.1002/hep.26185.
  • [9] Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybern Biomed Eng 2021;41(4): 1322-46. https://doi.org/10.1016/j.bbe.2021.06.005.
  • [10] Zakrzewska KE, Samluk A, Wencel A, Dudek K, Pijanowska DG, Pluta KD. Liver tissue fragments obtained from males are the most promising source of human hepatocytes for cell-based therapies – flow cytometric analysis of albumin expression. PLoS One 2017;12(8):e0182846.
  • [11] Lee JH, Park HJ, Kim YA, Lee DH, Noh JK, Jung JG, et al. Establishment of a serum-free hepatocyte cryopreservation process for the development of an “Offthe-Shelf” bioartificial liver system. Bioengineering 2022;9(12):738. https://doi. org/10.3390/bioengineering9120738.
  • [12] Rowe C, Gerrard DT, Jenkins R, Berry A, Durkin K, Sundstrom L, et al. Proteome-wide analyses of human hepatocytes during differentiation and dedifferentiation. Hepatology 2013;58(2):799-809. https://doi.org/10.1002/hep.26414.
  • [13] Demetriou AA, Brown RS, Busuttil RW, Fair J, McGuire BM, Rosenthal P, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004;239(5):660-70. https://doi.org/10.1097/01. sla.0000124298.74199.e5.
  • [14] Teperman L. The ELAD Study Group. Bilirubin Improvement correlates with 90-day survival with use of the ELAD systemin a randomized, controlled study of subjects with acute alcoholic hepatitis or acute decompensation of cirrhosis [abstract]. Am J Transplant 2013;13(Suppl 5):147.
  • [15] Filippi C, Keatch SA, Rangar D, Nelson LJ, Hayes PC, Plevris JN. Improvement of C3A cell metabolism for usage in bioartificial liver support systems. J Hepatol 2004;41(4):599-605. https://doi.org/10.1016/j.jhep.2004.06.012.
  • [16] Mavri-Damelin D, Eaton S, Damelin LH, Rees M, Hodgson HJF, Selden C. Ornithine transcarbamylase and arginase I deficiency are responsible for diminished urea cycle function in the human hepatoblastoma cell line HepG2. Int J Biochem Cell Biol 2007;39(3):555-64. https://doi.org/10.1016/j.biocel.2006.10.007.
  • [17] Mavri-Damelin D, Damelin LH, Eaton S, Rees M, Selden C, Hodgson HJF. Cells for bioartificial liver devices: The human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol Bioeng 2008;99(3):644-51. https://doi.org/10.1002/bit.21599.
  • [18] van Wenum M, Adam AAA, Hakvoort TBM, Hendriks EJ, Shevchenko V, van Gulik TM, et al. Selecting cells for bioartificial liver devices and the importance of a 3D culture environment: A functional comparison between the HepaRG and C3A cell lines. Int J Biol Sci 2016;12(8):964-78. https://doi.org/10.7150/ijbs.15165.
  • [19] Missiaen R, Anderson NM, Kim LC, Nance B, Burrows M, Skuli N, et al. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab 2022;34(8):1151-1167.e7. https://doi.org/10.1016/j. Cmet.2022.06.010.
  • [20] Thompson J, Jones N, Al-Khafaji A, Malik S, Reich D, Munoz S, et al. Extracorporeal cellular therapy (ELAD) in severe alcoholic hepatitis: A multinational, prospective, controlled, randomized trial. Liver Transplant 2018;24 (3):380-93. https://doi.org/10.1002/lt.24986.
  • [21] Pluta KD, Samluk A, Wencel A, Zakrzewska KE, Gora M, Burzynska B, et al. Genetically modified C3A cells with restored urea cycle for improved bioartificial liver. Biocybern Biomed Eng 2020;40(1):378-87. https://doi.org/10.1016/j.bbe.2019.12.006.
  • [22] Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55(4):611-22. https://doi.org/10.1373/ clinchem.2008.112797.
  • [23] Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in realtime PCR. Nucleic Acids Res 2002;30(9):e36.
  • [24] Anton D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: A breakthrough in vivo. Int J Mol Sci 2015;16(3):5517-27. https://doi.org/10.3390/ijms16035517.
  • [25] Moedas MF, Adam AAA, Farelo MA, IJlst L, Chamuleau RAFM, Hoekstra R, et al. Advances in methods for characterization of hepatic urea cycle enzymatic activity in HepaRG cells using UPLC-MS/MS. Anal Biochem 2017;535:47-55. https://doi. org/10.1016/j.ab.2017.07.025.
  • [26] Jelen S, Gena P, Lebeck J, Rojek A, Praetorius J, Frokiaer J, et al. Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am J Physiol - Gastrointest Liver Physiol 2012;303(11):1279-87. https://doi.org/10.1152/ajpgi.00153.2012.
  • [27] Guzman-Lepe J, Cervantes-Alvarez E, Collin de l’Hortet A, Wang Y, Mars WM, Oda Y, et al. Liver-enriched transcription factor expression relates to chronic hepatic failure in humans. Hepatol Commun 2018;2(5):582-94. https://doi.org/10.1002/ hep4.1172.
  • [28] Nagaki M, Moriwaki H. Transcription factor HNF and hepatocyte differentiation. Hepatol Res 2008;38(10):961-9. https://doi.org/10.1111/j.1872-034X.2008.00367.x.
  • [29] Speir E. Cytomegalovirus gene regulation by reactive oxygen species. Agents in atherosclerosis. Ann N Y Acad Sci 2000;899(1):363-74.
  • [30] Gautier A, Ould-Dris A, Dufresne M, Paullier P, Von Harten B, Lemke HD, et al. Hollow fiber bioartificial liver: Physical and biological characterization with C3A cells. J Memb Sci 2009;341(1-2):203-13. https://doi.org/10.1016/j. Memsci.2009.06.007.
  • [31] de Hoyos-Vega JM, Hong HJ, Stybayeva G, Revzin A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng 2021;5(4):041504. https://doi.org/10.1063/5.0058798.
  • [32] Coltman NJ, Coke BA, Chatzi K, Shepherd EL, Lalor PF, Schulz-Utermoehl T, et al. Application of HepG2/C3A liver spheroids as a model system for genotoxicity studies. Toxicol Lett 2021;345:34-45. https://doi.org/10.1016/j.toxlet.2021.04.004.
  • [33] Štampar M, Breznik B, Filipič M, Žegura B. Characterization of in vitro 3D cell model developed from human hepatocellular carcinoma (HepG2) cell line. Cells 2020;9(12):2557. https://doi.org/10.3390/cells9122557.
  • [34] Li CY, Stevens KR, Schwartz RE, Alejandro BS, Huang JH, Bhatia SN. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng - Part A 2014;20(15-16): 2200-12. https://doi.org/10.1089/ten.tea.2013.0667.
  • [35] Pluta K, Kacprzak MM. Use of HIV as a gene transfer vector. Acta Biochim Pol 2009;56(4):531-95.
  • [36] Wencel A, Ciezkowska M, Wisniewska M, Zakrzewska KE, Pijanowska DG, Pluta KD. Effects of genetically modified human skin fibroblasts, stably overexpressing hepatocyte growth factor, on hepatic functions of cocultured C3A cells. Biotechnol Bioeng 2021;118(1):72-81. https://doi.org/10.1002/bit.27551.
  • [37] Sun L, Yang H, Wang Y, Zhang X, Jin B, Xie F, et al. Application of a 3D bioprinted hepatocellular carcinoma cell model in antitumor drug research. Front Oncol 2020; 10:878. https://doi.org/10.3389/fonc.2020.00878.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca26a668-ee5c-4323-bca3-6d293a59077d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.