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Abstract 

In everyday practice cyclic scheduling problems, especially timetabling ones 

arise in different application and service domains, e.g., class, train, crew 

timetabling, and so on. In many cases, e.g., caused by assumed slot size, 

imposing integer domain results in Diophantine character of problems 

considered. In that context some classes of cyclic scheduling problems can be 

seen as non-decidable (undecidable) ones. That means, since system constraints 

(i.e., parameter domains) determine its behavior (e.g., the space of feasible 

schedules), hence both system structure configuration and desired schedule have 

to be considered simultaneously. So, cyclic scheduling problem solution requires 

that the system structure configuration must be determined for the purpose of 

processes scheduling, yet scheduling must be done to devise the system 

configuration. In that context, this contribution provides discussion of some 

solubility issues concerning cyclic processes dispatching problems. 

 
 

1. INTRODUCTION 
 
The A cyclic scheduling problem arise in case when system common shared resources have 

to be allocated to operations in the system composed of concurrently executed cyclic processes 
as to meet requirements assumed. Operations in cyclic processes are executed along sequences 
that repeat an indefinite number of times. The scheduling problems considered belong to the 
class of NP-hard ones and are usually formulated in terms of decision problems, i.e. as 
searching for an answer whether a solution possessing the assumed features exists or not [10].  

In everyday practice they arise in different application domains (such as manufacturing, 
time-sharing of processors in embedded systems, digital signal processing, and in compilers for 
scheduling loop operations for parallel or pipelined architectures) as well as service domains 
(covering such areas as workforce scheduling (e.g., shift scheduling, crew scheduling), 
timetabling (e.g., train timetabling, aircraft routing and scheduling), and reservations (e.g., 
reservations with or without slack, assigning classes to rooms) [4, 5, 7, 14, 15]. Such systems 
belong to a class of so called systems of concurrently flowing cyclic processes (SCCP) [4]. 
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Subway or train traffic can be considered as an example of such kind of systems. Most systems 
operate several routes, and distinguish them by numbering, names and colors. Some lines may 
share track with each other, or operate solely on their own right-of-way. Assumption the 
subway trains following particular metro lines (due to the subway map, that can be seen as a 
kind of the transit map) can be treated as cyclic processes passing, due to a given timetable, the 
sequence of stations, allows one to state a question concerning a minimization of the total 
passenger travel time.  

So, if passengers travel between two distinguished locations in the transportation network 
for which no direct connection exists, i.e., transfers become inevitable, the relevant scheduling 
problem can be stated in the following way. Given a set of metro lines, each one treated as a 
repeating sequence of stations. Some lines may share the common stations. Given a headway 

time (interval between the trains), i.e., the fixed interval between the trips of a line sometimes 
called the period time. The question considered is: What is a transportation route between to 
designated terminal stations in the transportation network providing the shortest travel time 
subject to above mentioned constraints?  

Above stated rather very rough problem formulation can be specified in much more 
detailed manner, taking into account other constraints (e.g. determining processes interaction – 
conducted due to rendezvous or mutual exclusion protocol) as well as goal functions 
(objectives) (e.g. aimed at minimizing dwell and transfer times, number of vehicles, and so on). 

Other examples of systems composed of concurrently flowing cyclic processes follow from 
traffic route organization, e.g. employing the “green wave” concept, as well as railway and 
airplane traffics. In the case of traffic light control the problem reduces itself to the question: 
Does there exist such control guaranteeing each route in each direction provides “green wave” 
vehicles flow? In some sense an alternative (i.e. reverse) question is: Does there exist such 
traffic light controls guaranteeing some places on an urban traffic route map can be linked by 
“green waves”? Such solution seems to be of great importance in cases caused by sport or 
show as well as morning or afternoon rush hour management. 

Let us focus, however on problems belonging to the class of non decidable ones. In order to 
illustrate this fact let us consider the transportation route linking two subway’s stations while 
composed of the three metro lines �, �, and �. Let us assume the route, i.e., the sequence ��, �, �
 is specified by number of stations ��, � 5 '�, �, �), and time intervals ��, � 5 '�, �, �), 
between two subsequent trains. That means the trains in the line � are scheduled with �Wminutes periodicity. The only one train is allowed to run between two subsequent stations. 
Assume �W � 3, �X � 4, and �� � 2 (in numbers), while �W � 1, �X � 2, and �� � 3 (in 
minutes). So, the time required for travel between distinguished two stations can be easily 
calculated as the following sum: �W ·  �W  �  ��X � 1
 · �X  �  ��� � 1
 · ��, end equals to 3 �  9 �  7 �  19. However in case of opposite the question: what is the route composed of 
three lines with arbitrarily assumed time intervals �W, �X, ��, guaranteeing the travel time 
between two stations equals to � 5 �?, is not so easy.  

It should be noted that corresponding equation: �W ·  �W  �  ��X � 1
 · �X  �  ��� � 1
 · �� ��, is a kind of linear Diophantine equation [27, 28] where �W, �X , �� 5 � are sought. The 
problem considered is a decision problem that can be seen as a question stated in some formal 
system with a yes-or-no answer, depending on the values of some input parameters. Because of 
its Diophantine character its general case is a non decidable one [12, 13].  

Assuming the system’s structure imposed by integer domain of variables, i.e., modeled by 
Diophantine equations determines the system’s behavior (seen as a set of feasible schedules), 
one can formulate the following questions regarding travel scheduling on the base of 
concurrently flowing cyclic processes framework: 
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Does the assumed system behavior can be achieved under the given system’s structure 

constraints?  
Does there exist the system’s structure such that an assumed system behavior can be 

achieved? 

Therefore, taking into account non decidability of Diophantine problems one can easily 
realize that not all the behaviors are reachable under constraints imposed by system’s structure. 
The similar observation concerns the system’s behavior that can be achieved in systems 
possessing specific structural constraints. To summarize, the conditions guaranteeing 
solvability of the cyclic processes scheduling are of crucial importance. Their examination may 
replace exhaustive searching for solution satisfying required system functioning.  

Many models and methods have been proposed to solve the cyclic scheduling problem. 
Among them, the mathematical programming approach (usually IP and MIP), max-plus 
algebra, constraint logic programming and Petri net frameworks belong to the more frequently 
used. Most of them are oriented at finding of a minimal cycle or maximal throughput while 
assuming deadlock-free processes flow. The approaches trying to estimate the cycle time from 
cyclic processes structure and the synchronization mechanism employed (i.e. rendezvous or 
mutual exclusion instances) are quite unique. The same regards of the Diophantine nature of 
timetabling originated cyclic scheduling models.  

In that context our main contribution is to propose a new modeling framework enabling to 
evaluate the cyclic concurrently flowing processes behavior (cyclic steady state) on the base of 
the given processes topology, dispatching rules employed and an initial state. So, the paper’s 
objective is to provide the observations useful in the course of jobs routing and scheduling in 
systems composed of cyclic processes interacting each other through mutual exclusion 
protocol.  

The rest of the paper is organized as follows: Section 2 describes the case of manufacturing 
processes cyclic scheduling. The concept of Diophantine problem is then recalled in Section 3. 
In Section 4, a case of a multi-mode cyclic manufacturing processes scheduling problem is 
investigated. Conclusions are presented in Section 5.  

 
 
2. SYSTEMS OF CONCURRENT CYCLIC PROCESSES 

 
In order to illustrate a system of concurrent cyclic processes let us consider the digraph 

shown in Fig. 1. The distinguished are three cycles specifying routes of cyclic processes ��, �� 
and �� respectively. Each process route specified by sequence of resources passed on among its 
execution can interact with other processes through so-called system common resources. So, in 
case considered the process route are specified as follows:  

 
 �� � �S�, S�, S�
, �� � �S�, S�, S�
, �� � �S�, S�, S�
, (1) 

 
where the resources S�, S�, S�, are shared resources, since each one is used by at least two 
processes, and the resources S�, S�, S�, are non-shared because each one is exclusively used 
by only one process. Processes sharing common resources interact each other on the base of 
mutual exclusion protocol. The possible resources conflicts are resolved with help of assumed 
priority rules determining the order in which processes make their access to common shared 
resources (for instance, in case of resource S�, D� �  ���, ��
 – the priority dispatching rule 
determines the order in which processes can access to the shared resource S�, i.e. at first to the 
process ��, then to the process ��, next to �� and once again to ��, and so on). 
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Fig. 1. Process routes structure of SCCP owning three processes  
 

In general case, each process ��  (where �� 5 � � '��, ��, . . . , �% ), and � is a number of 
processes) usually assigned to a production route, executes periodically a sequence of 
operations using resources defined by a process route �� � �S�j , S�O , . . . , S�� �¡

, ¢£ 5'1,2, … , C), where ¤���
 denotes a length of cyclic process route and C denotes number of 
resources. In other words S�¥ 5 S, where S is a set of resources of SCCP S �'S�, S�, . . . , ST ). The time ��,�, ��,� 5 >, of operation executed on S� along �� , is defined in 
domain of uniform time units (> – set of natural numbers). The operation times corresponding 
to resources along ��  create the sequence �� � ���,�j , ��,�O , . . . , ��,���¡

. To each common shared 

resource S� 5 S the priority dispatching rule D� �  ���j , ��O , … , ���¦�¡

, ¢£ 5 '1,2, … , �), ��¥ 5 � 

is assigned, where ¤���
 q 1 determine a number of the �-th dispatching rule D� elements.  
In that context the system b� ∈ b��� can be treated as the following quadruple:  
 

 b� � �r, �, S, B
 (2) 
 
where: r � '��, ��, . . . , �%) – the set of process routes, 

 � � '��, ��, . . . , �%) – the set of sequences of process routes operations times, 
 S � 'S�, S�, . . . , ST) – the set of resources,  
 B � 'D�, D�, . . . , DT) – the set of dispatching priority rules.  
The considered class of b��� assumes unit operation times for all sequences ��  i.e. ��,� �1. 
So, the set of process routes r determining simple (i.e., local) and repetitively executed 

cyclic processes can be considered in course of different travel routes prototyping (while 
linking distinguished system resources), i.e. production flows prototyping. In that context the 
main question concerns of SCCP cyclic steady state behavior which depends on direction of local 
process routes as well as on priority rules determining the order in which processes make their 
access to the common shared resources, and an initial state, i.e. initial process allocation to the 
system resources. Therefore, assuming such a steady there exists the next question regards of travel 
time along assumed route linking distinguished resources. Consequently, a SCCP scheduling of 
plays a pivotal role in multi-product production flow scheduling. So, our assumption is that a way of 
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SCCP periodicity adjustment can be employed in course of scheduling of production executed in 
such class of processes. 

 
 
3. CONCURRENTLY FLOWING CYCLIC PROCESSES 

SCHEDULING 
 
In the assumed class of systems, different cyclic scheduling problems can be considered. 

For example, the following questions can be formulated [1, 2]: Does there exists such an initial 
state that leads to a steady state in which no process waits to access to the common shared 
resources? What kind of initial states guarantee different steady states under the same sat of 
priority dispatching rules? What set of priority dispatching rules guarantee, if any, the same 
rate of resources utilization? 

In general case, besides of quantitative features of system behavior the questions may 
concern the qualitative ones such as deadlock and/or conflict avoidance [8]. For example they 
may be aimed at satisfaction of conditions, which guarantees system’s repetitiveness for a 
given initial state and/or allocation of dispatching rules.  

 
 

3.1 Cyclic steady state 

 
Consider the SCCP shown in Fig. 1. Since at each moment system resources are either 

occupied or not by processes, hence the relevant processes allocation can be specified by the 
following sequence: 

 
 � � ���, ��, … , �T
, (3) 
 
where: �� 5 � c '∆), � � '��, ��, … , �%) – the set of processes, �� � �£  means, that the �-th 

resource S� is occupied by the �-th process �£, �� � ∆ - means, that the �-th resource S� is unoccupied, C – a number of resources. 
For the SCCP from Fig. 1 the processes allocation has the following form: 
 

 � � ���, ∆, ��, ∆, ∆, ��
, (4) 
 
In turn, the current processes allocation is determined by sequence of semaphores ª (4) 

following the order of the priority rules. So, the �-th semaphore �� , assigned to the �-th resource S� determines the process allowed to occupy the resource at the moment considered.  
 

 ª � ���, ��, … , �T
, (5) 
 
where: �� 5 � - means the name of the process (specified in the �-th dispatching rule D� , allocated to the �-th resource) allowed to occupy the �-th resource; for instance �� � �£ means that at the moment process �£ is allowed to occupy the �-th resource. 

For the SCCP from Fig. 1 the sequence of semaphores ª has the following form: 
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 ª � ���, ��, ��, ��, ��, ��
. (6) 
 
In that context, the following definition of the «-th state is assumed:  
 

 b£ � ��£, ª£
, (7) 
 b£ � ����£ , ��£ , … , �T£
, ���£ , ��£, … , �T£

. (8) 

 
where: �£ - the sequence of processes allocation at the �-th state, ª£ - the sequence of 

semaphores at the �-th state. 
Due to the above definition the state ¬« determines the �-th event (at the �-th discrete 

moment of time) current and subsequent processes alloaction. That means, the assumption 
concerning the unit operations times ��,� � 1, implies execution of each operation corresponds 
to a system state.  

The state ¬« determined by (7) and (8), and following the condition (9) is called a feasible 
state:  

 
 h�5'�,�,…,T) ��� 5 '�� , ∆)
. (9) 

 
The set of all feasible states is called a state space ­, i.e., b£ 5 ­. 
Consider two subsequent states b£ and b®:  
 

 b£ � ����£ , ��£ , … , �T£
, ���£ , ��£, … , �T£

, (10) 
 b® � ����® , ��® , … , �T®
, ���® , ��® , … , �T®

. (11) 

 

Assume the states b£, b® are feasible: b£, b® 5 ­. The state ¬¯ is reachable directly from 
the state ¬« if the following conditions hold: 

 

 h�5'�,�,…,T)�5'�,�.,,,.%) °���£ � ∆
 ± I�²¡��³
£ � ��£N ´ ���£}� � ��£
µ, (12) 

 h�5'�,�,…,T)�5'�,�,…,%) °���£ � ∆
 ± I�²¡��³
£ ¶ ��£N ´ ���£}� ¶ ���µ, (13) 

  h�5'�,�,…,T)+��� £ � ∆
 ´ ���£}� � ��£
.,  (14) 
 h�5'�,�,…,T)+��� £ ¶ ∆
 ± ���£}� ¶ ∆
 ´ +���£}� � ��£
 ± ���£}� � ��£
.., (15) 

 h�5'�,�,…,T)+���£ ¶ ∆
 ± ���£}� � ∆
 ´ ���£}� � ·����£

., (16) 

 h�5'�,�,…,T) °���£ ¶ ∆
 ± I�k¡�W¡¥
£ � �� £N ´ I�k¡�W¡¥
£}� � ��£N ± ���£}� � ∆
µ, (17) 

 h�5'�,�,…,T) °���£ ¶ ∆
 ± I�k¡�W¡¥
£ ¶ �� £N ´ ���£}� � ��£}�
µ, (18) 

 
where: C – a number of resources, � – a number of processes, ·����
 – means the process directly succeeding the process ��  in the �-th priority 

dispatching rule D�, ·����
 5 �, e����
 – means the index of resource directly proceeding the resource S�, in the ¢-th 
process route ��, e����
 5 '1,2, … , C), d����
 – means the index of resource directly succeeding the resource S�, in the ¢-th 
process route ��, d����
  5 '1,2, … , C). 
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The assumed set of conditions (12) ÷ (18) is noted §. Feasibility of the state b® means there 
is the state b£ such that the state b® is directly reached from b£, i.e., the following conditions §, and is denoted by: b£  ¸ Z  b®. In general case, the states b£ and b® can be linked by other 

states, e.g. b¹,  b� what leads to the following sequence of transitions: b£  ¸ Z  b¹  ¸ Z b�   ¸ Z b®, 

noted in short by b£  ¸,� º» b®, where: � means the number of states (b¹, b�) linking states b£, b®. So, in case consider b£  ¸,�º» b®, and b£  ¸ Z  b® corresponds to b£  ¸,� º¼»  b®. 
The states reachability enables to define a cyclic steady state of SCCP. The finite set of 

feasible states b� � 'bW, bX ,  b�, … ,  b½), b� 0 ­ is called a cyclic steady state of SCCP if the 
following condition holds:  

 

 bW  ¸ Z  bX  ¸ Z b�  ¸ Z …  ¸ Z b½  ¸ Z  bW (19) 
 
In other words a cyclic steady state means such a set of states in which starting from any 

distinguished state that is possible to reach the rest of states and finally reach this distinguished 
state again. Each cyclic steady state is determined by so called period of cyclic steady state ��. 
A cyclic steady state period ¾� is defined in the following way: �� � ¿b�¿. Of course, for 

any b£ 5 b� the following property holds b£  ¸,�À�H�
 º¼¼¼¼¼» b£. 
In that context searching for a cyclic steady state b� in a given SCCP can be seen as a 

reachability problem where for an assumed initial state b� the state b£ such that holds 

 bW  ¸,� º» b£  ¸,�À�H�
 º¼¼¼¼¼»  b£ is sought. 
In order to illustrate the concepts defined let us consider SCCP shown in Fig. 2. For the 

initial state: b� � ���, ª�
: 
 

 �� � ���, ∆, ��, ∆, ∆, ��, ��
, ª� � ���, ��, ��, ��, ��, �� , ��
, (20) 
 

 
 

Fig. 2. Process routes structure of SCCP owning four processes 

- the resource S£ occupied by the process  ��  

- the resource S£ occupied by the 
process �� and controlled by the 
priority dispatching rule D � ��, §
 

 S£:  �� 
 

S£:  �� 
σ: ��, §
 S£: Δ 

 
- the unoccupied resource S£  

S�: �� 
σ: ��2, �1
 

S�: Δ 

 

�� 
 

�� 
�� 
 

S�: Δ 
σ: ���, ��
 

S�: Δ 
σ: ���, ��, ��
 S�:  �� 

 �� 
 

S�:  �� 
σ: ���, ��
 

S�:  �� 
σ: ���, ��
 Legend: 
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Fig. 3 The SCCP behavior, the case corresponding to the initial state b� � ����, Á, ��, Á, Á, ��, ��
, ���, ��, ��, ��, ��, ��, ��

. a) illustration of the transitions 

between states in the cyclic steady state (the period equal to 7), b) the cyclic steady state of the 
state space sub-space, c) the states of cyclic steady state 
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and the following set of priority dispatching rules: B � 'σ�, σ�, σ�, σ�, σ�, σ�, σ�): 
 

 D� � ���, ��
, D� � ���
, D� � ���, ��
, D� � ���, ��
, D� � ���, ��, ��
, (21) D� � ���, ��
, D� � ���
. 
 
The transient and cyclic steady periods can be seen in Fig. 3. An illustration of possible 

transitions among the states following condition § and the initial state b� (20) is shown in Fig. 
3a). The transitions considered are as follows (22):  

 

 b�  ¸ Z  b�  ¸ Z b�  ¸ Z b�  ¸ Z b�  ¸ Z b�  ¸ Z b�  ¸ Z b� (22) 
 
Transition from the state b� again to the state b� means the SCCP’s behavior enables to 

observe its cyclic manifestation, i.e., cyclic steady period with the cycle length ���  �  7. In the 
case more than one cyclic steady state period may occur, the subsequent ones are distinguished 
by b�� where � means the number of the possible manifestation of SCCP behavior. In each case 
a cyclic steady state period can be specified by the sequence of states occurring in its 
execution:  

 
 b�� � 'b�,  b�,  b�,  b�, b�,  b�,  b�) . (23) 
 
For illustration let us consider the Fig. 3b) showing the advanced (more detailed) version 

from Fig. 3a). Fig. 3b) illustrates a part of state space ­ creating the cyclic steady state b��. In 
turn the table-like representation of the cyclic steady state period b� przeshow the Fig.3c). For 
the sake of simplicity the representations used in Fig. 3b) and Fig. 3c) will be used in the rest 
of considerations.  

With any cyclic steady state period of the SCCP the relevant cyclic realization of processes’ 
operations is related. The illustration of particular operations is show in the form of the Gantt’s 
chart, e.g., from Fig. 4. In the case considered the Gantt’s chart provides allocation of �£ 
processes in the � states (assuming the unit operation times the �-th state corresponds to the �-
th event occurring in the �-th unit of time). In the Fig.4 three periods of SCCP behavior are 
distinguished. In the case considered the initial state belong to the cyclic steady state, that 
means the SCCP starts its functioning without any transient period, however under the same set 
of priority dispatching rules the relevant SCCP behavior (see the Gant’s diagram in Fig 5).  

Transition from the state (20) to the sate (24) leads to the new cyclic steady state b�� with 
periodicy ���  �  9. It means the cyclic steady state b�� is reachable from the state (20) 
through two transition satates.  

This observation can be summarized: the different initial states may lead to different steady 
states under the same set of priority dispatching rules. 

The steady state periods shown in Gantt’s chart terms in Fig. 4 and Fig. 5 can be also 
recognized in terms of already introduced state space concept. For the illustration let us 
consider the part of the state space encompassing the behavior of the SCCP form Fig. 2. This 
part, which is shown in Fig. 6, consists only the 147 states from the whole state space 
encountering of 222 states. Some of them as the state b� lead to cyclic steady state period 
length of 7 (i.e. the cyclic steady state b�� from the Fig 3b)), some of them as the state b� lead 
to cyclic steady state period length of 9 (the cyclic steady state b��, see Fig. 5)), someone else 
as the state b�� lead to the deadlock states (the deadlock states are graphically distinguished by 
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the following symbol �). The deadlock state means the state in which at least one process 
cannot continue its activity. 

 
 

Fig. 4 Gantt’s chart of the SCCP behavior. The case corresponding to the initial state b� �����, Á, ��, Á, Á, ��, ��
, ���, ��, ��, ��, ��, ��, ��

.  
 

 
 

Fig. 5 Gantt’s chart of the SCCP behavior. The case corresponding to the initial state b� �����, Δ, Δ, ��, Δ, ��, ��
, ���, ��, ��, ��, ��, ��, ��

 
 
Besides of initial process allocation and priority rules determining the order in which 

processes make their access to the common shared resources the cyclic steady state behavior 
depends on direction of local process routes as well.  
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Fig. 6 The state space ­ of the SCCP from Fig. 2  
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Fig. 7 The SCCP behavior corresponding to the initial state b� � ��Δ, ��, Δ, ��, Δ, ��, ��
, ���, ��, ��, ��, ��, ��, ��

 and dispatching rules D� ����, ��
, D� � ���
, D� � ���, ��
, D� � ���, ��
, D� � ���, ��, ��
, D� � ���, ��
, D� � ���
, a) 
the part of the state space ­, b) the Gantt’s chart  

 

 
 

Fig. 8 The SCCP behavior corresponding to the initial state b� � ��Δ, ��, Δ, ��, Δ, �� , ��
, ���, ��, ��, ��, ��, �� , ��

, and dispatching rules: D� � ���, ��
, D� � ���
, D� � ���, ��
, D� ����, ��
, D� � ���, ��, ��
, D� � ���, ��
, D� � ���
 a) the part of the state space ­, b) the 
Gantt’s chart  
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In case of the following initial state b� � ���, ª�
: 
 

 �� � ���, ∆, ∆, ��, ∆, ��, ��
, ª� � ���, ��, ��, ��, ��, �� , ��
, (24) 
 
The deadlock state can be observed in the SCCP from the Fig. 6c) assuming the following 

initial state:  
 
 b�� � ����, ��, ∆, ∆, ��, ��, ∆
, ���, ��, ��, ��, ��, ��, ��

. (25) 
 
Trajectories linking above mentioned states with relevant cyclic steady states and the 

deadlock state are shown in tables Fig. 6a’), b’), and c’), respectively. 
In turn, assuming the same initial state the different sets of dispatching rules can lead either 

to different cyclic steady states or to the deadlock state. For illustration of case the different 
dispatching rules can lead to different cyclic steady states from the same initial state consider 
the SCCP in Fig. 7b) and Fig. 8b) the resultant cyclic steady states are characterized with the 
period ���  �  7 and ��� �  9 respectively. The graphical illustration of the corresponding 
states space is shown in Fig. 7a) and Fig. 8a).  

In order to summarize the steady state space generated by structure of SCCP, i.e., processes 
routes topology and sets of priority dispatching rules, as well as possible behaviors following 
different initial states allow one to classify the systems considered as a kind of discrete event 
systems [2]. In that context the main question concerns of assumed cyclic steady states 
reachability. Assuming the cycle length characterizing the steady state period means a number 
of states determining this cycle the question considered can be stated as follows: what is an 
initial state and a set of priority dispatching rules, if any, guaranteeing assumed cycle length in 
a given SCCP? Such question assumes implicitly that periodic behavior of the whole SCCP is 
limited by lowest common multiple (l.c.m.) of elementary processes cycle lengths, where l.c.m. 
plays a lower bound of possible cycles describing periodic behavior of the SCCP. 

 
3.2 Diophantine model  

 
In order to illustrate the Diophantine character of the model under study, let us consider the 

system of concurrently flowing cyclic processes shown in Fig. 1. At the initial state: 
 
 b� � ����, ∆, ��, ∆, ∆, ��
, ���, ��, ��, ��, ��, ��

,  (26) 
 

the cyclic steady state system behavior, illustrated by Gantt’s chart (see Fig. 9), is characterized 
by cycle �� � 5 (obtained under assumption ��,� � ��,� � ��,� � ��,� � ��,� � ��,�  � ��,� ���,� � ��,� � 1).  

In general case, the periodicities of the cyclic steady states as well as corresponding sets of 
dispatching rules can be calculated from the linear Diophantine equation of the following form: 3� �  3� �  �� � �, where �, �, � mean the numbers of processes executions, respectively ��, ��, ��, within the one period of cyclic steady state b�. The formulae considered have been 
obtained through the following transformations, following the assumptions below:  
• the initial state and set of dispatching rules guarantee that an admissible solution exists 

(i.e. cyclic steady state), 
• the structure of the graph model is consistent.  
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Fig. 9 Gantt’s chart of the SCCP (Fig. 1) behavior corresponding to the initial state: b� �����, ∆, ��, ∆, ∆, ��
, ���, ��, ��, ��, ��, ��

 and set of priority dispatching rulet: D� � ���
, D� ����
, D� � ���, ��
, D� � ���, ��
,  D� � ���, ��
, D� � ���
 
 
Consider the following set of equations (27)-(29): 
 

 � · ���,� � ��,� � ��,�� � � · ��,� � � Ã ��,� � ��, (27) 
 � · ���,� � ��,� � ��,�� � � · ��,� � � Ã ��,� � ��, (28) 
 � · ���,� � ��,� � ��,�� � � · ��,� � � Ã ��,� � ��, (29) 

 
where: ��,� – the execution time of the operations executed on the resource S� along the 

process ��,  �� – okres przebiegu cyklicznego, �, �, � – the numbers of processes executions, respectively ��, ��, ��, within the one 
period of cyclic steady state b�. 

Subtracting equation (29) from equation (28) the resulting equation has the form:  
 

 � · ��,� � � · ��,� � � · ��,� 9 � Ã ��,� 9 � Ã ��,� 9 � · ��,� � 0 (30) 
 

and after adding it to equation (27), the resultant formulae has the form:  
 

 � Ã �2��,�  �  ��,�
  �  � Ã �2��,�  �  ��,�
 –  � Ã ��,�  �  �� .  (31) 
 

Consequently, the obtained equation:  
 

 � Ã � �  � Ã ? �  �� �  � Ã �  (32) 
 

is Diophantine equation, where � �  ? �  3 and � �  1 under the following assumption ��,� � ��,� � ��,� � ��,� � ��,� � ��,�  � ��,� � ��,� � ��,� � 1, i.e. it takes the following form: 3� �  3� �  �� �  �. First three solutions of this equation are shown in Table 1. It should be 
noted however, that since the assumed set of priority dispatching rules: 

 
 D� � ���
, D� � ���
, D� � ���, ��
, D� � ���, ��
,  D� � ���, ��
, D� � ���
, (33) 
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forces alternating access of processes to the shared resources, i.e., � �  � �  �, hence the 
solution corresponding to the cyclic steady state �� � 6 cannot be reached. Such behavior is 
not feasible in case of assumed dispatching priority rules. 
 
Tab. 1. First three solutions of the Diophantine equation: 3� �  3� �  �� �  �.  
 ¾� Å Æ Ç 

5 1 1 1 

6 1 2 3 

10 2 2 2 

 
This might be considered in cases assuming the set of dispatching rules encompassing 

required frequencies of processes occurrence, e.g.,   
 
 D� � ���
, D� � ���
, D� � ���, ��, ��
, D� � ���, ��, ��, ��, ��, ��
, (34) D� � ���, ��, ��, ��
, D� � ���
, 
 
The case considered follows from the facts that the Diophantine problems: 
have fewer equations than unknown variables and involve finding integers, which satisfy 

all equations, 
can be set up taking into account different structural and behavioral factors, e.g. already 

mentioned different frequencies of processes occurrence in a priority dispatching rule, 
different idle times the processes have to spend waiting for their access to shared 
resources (forced by mutual exclusion protocol following dispatching rules employed).  

In order to illustrate the above mentioned cases let us consider once again the SCCP shown 
in Fig. 1. And let us assume the following frequencies of local processes repetition in the whole 
SCCP cycle: �: �: � �  1: 2: 1. The values considered �: �: � follows from the assumed blow 
priority dispatching rules:  

 D� � ���
, D� � ���
, D� � ���, ��, ��
, D� � ���, ��, ��
,  D� � ���, ��
, D� � ���
, (35) 
 

The equations are of the following form: 
 

 È3� � 2� � � � ��3� � 2� � � � ��3� � � � � �  �� l  �, �, �, �� 5 �  (36) 

 
The solution (�� � 8 for � � 1, � � 2, � � 1) is illustrated in Fig. 10.  
In case when �: �: � �  3: 2: 1, and  

 
 D� � ���
, D� � ���
, D� � ���, ��, ��, ��, ��
, D� � ���, ��, ��
,  (37) D� � ���, ��, ��, ��
, D� � ���
,   

 
i.e. the set of Diophantine equations has the following form: 



56 
 

 

 i 3� � 1� � � � �� �� � � 3� � � � ���� � � � � 3� � �� l  �, �, �, �� 5 �   (38) 

 
The solution (�� � 12 for � � 3, � � 2, � � 1) is shown in Fig. 11  

 

 
 

Fig. 10 The SCCP (from Fig. 1) behavior corresponding to the dispatching rules: D� ����
, D� � ���
, D� � ���, ��, ��
, D� � ���, ��, ��
,  D� � ���, ��
, D� � ���
, a) the part of the 
state space ­, b) the table including the states of the cyclic steady state  

 

 
Fig. 11 The SCCP (from Fig. 1) behavior corresponding to the dispatching rules: D� ����
, D� � ���
, D� � ���, ��, ��, ��, ��
, D� � ���, ��, ��
,  D� � ���, ��, ��, ��
, D� � ���
, a) 
the part of the state space ­, b the table including the states of the cyclic steady state  

 
Taking into account different frequencies of processes occurrence in a priority dispatching 

rule and the different idle times the processes have to spend waiting for their access to shared 
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resources one may consider general approach to the cycle time evaluation. Let us assume the 
cycle time of the whole SCCP from Fig. 12. Follows the formulae: �� �  ¤�C����, ���, ���
, 
where ¤�C��, ¤, �
 means the lowest common multiple of �, ¤, �∈�, and ���  - is the cycle time 
of the local process �� . 

Assuming the same frequency � � � � � � 1, and the operation times ��,�  � 1, ¢∈'1, … ,7), �∈'1, … ,3) the following set of Diophantine equations is considered: 
 

 ���  �  ��,�  �  ��,�  �  ��,�  �  α �  3 �  α (38) 
 ���  �  ��,�  �  ��,�  �  ��,�  �  β �  3 �  β (39) 
 ���  �  ��,�  �  ��,�  �  ��,�  �  γ �  3 �  γ  (40) 

 
where: α, β, γ - mean the idle times the processes have to spend waiting for their access to 

shared resources. 
Values of α, β, γ ∈'0,1,2, … ) depend on the SCCP’s topology. In case considered, see Fig. 

12 the process following �� may await on the resource S�. In case of �� may await on the 
resource S�, and in case of �� on resource S� and S� (corresponding waiting times are: γ�, γ�). 

 
Fig. 12. Process routes structure of SCCP owning three processes  

 

That is easy to note that in the case considered α, β, �γ� � γ��∈'0,1). Consequently, 
 

 �� �  ¤�C��3 �  α
, �3 �  β
, �3 �  γ

,  (41) 
 

where: γ �  γ�  � γ�;  γ�, γ� ∈'0,1); α∈'0,1); β∈'0,1). 
Taking into account all the possible substitutions the possible solutions are:  

 
 ��∈'3, 4, 12, 15, 20, 60), (42)  
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Since the ��  can be executed without two waiting i.e., before both S� and S�, hence the set of 
possible solutions can be as follows: �∈'3, 4, 12). Finally, assuming γ� � γ�  � 1, i.e. 

 
 �� �  ¤�C� �3 �  α
, �3 �  β
, �3 �  γ�  � γ�
 
,  (43)  

 
for γ�, γ� ∈'0,1), α∈'0,1), β∈'0,1) the cycle time obtained from the formulae below: 

 
 �� �  ¤�C� �3 �  α
, �3 �  β
, 4 
,  (44)  

 
where: α∈'0,1), β∈'0,1), 
equals to �� �  4. The graphical illustration of solution obtained is show in Fig. 13. 

In the context considered the following questions belong to the most frequently asked: Are 
there any solutions? Are there any solutions beyond some that are easily found by inspection? 
Are there finitely or infinitely many solutions? Can all solutions be found, in theory? Can one 
compute full list of solutions, i.e. the whole state space? 
 

 
Fig. 13 The SCCP (from Fig. 12) behavior corresponding to initial state: b� � ��Δ, ��, ��, Δ, Δ, ��, Δ
, ���, ��, ��, ��, ��, ��, ��

, and the dispatching rules: D� ����
, D� � ���
, D� � ���, ��, ��, ��, ��
, D� � ���, ��, ��
,  D� � ���, ��, ��, ��
, D� � ���
, a) 

the part of the state space ­, b) the table including the states of the cyclic steady state  
 
To summarize, the cyclic steady state generation problem has the goal to find a cycle time �� which fulfils the local processes frequency requirements and is feasible under assumed 

SCCP structural constraints. More formally, a decision problem (i.e. searching for the initial 
state and a set of dispatching rules) can be seen as a question stated in some formal system with 
a yes-or-no answer, depending on the values of some input parameters. The decision problems 
fall into two categories: decidable and non decidable problems [12, 13]. In this context, the 
primary question is to what kind of above-mentioned problems the real-life cyclic scheduling 
ones belong. 

A decision problem is called decidable or effectively solvable if an algorithm exists which 
terminates after a finite amount of time and correctly decides whether or not a given number 
belongs to the set. A classic example of a decidable decision problem is the set of prime 
numbers. It is possible to effectively decide whether a given natural number is the prime one, 
by testing every possible nontrivial factor. A set which is not computable is called non-
computable or non-decidable (undecidable), see for instance Post problem.  
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4. PRODUCTION FLOW SCHEDULING  

 
Assuming a given SCCP framework the problem considered can be seen as an initial state 

and a set of priority dispatching rules generation problem which has the goal to find a 
multiproduct production flow timetable fulfilling production orders requirement and is feasible 
under production system structural constraints.  

 
4.1 Concurrently flowing cyclic processes control 

 
An idea standing behind of the above stated problem assumes the production flow can be 

realized on the set of local, e.g., shop-level executing pipeline-like flowing processes repeating 
same operations cyclically. The shops interact each other via the common shared resources, 
e.g., workers, vehicles, warehouses, and so on. That means the interacting each other shops can 
be modeled as elements of a SCCP. Assuming priority dispatching rules allotted to shared 
resources the relevant production system can be seen as controlled (i.e. synchronized) by these 
rules.  

 
 

Fig. 14. Process routes structure of SCCP owning four processes 
 
In general case different production orders can be executed along different, alternative 

production routes, i.e. sequences of resources (machine tools, AGVs. Warehouses, and so on). 
In turn, the production routes can be seen as composition of sub-parts of shop routes. So, since 
different rules may result in different frequency of local processes occurrence, hence different 
rules imply different schedules of production orders execution. Moreover, different cycles of 
the SCCP steady state result in different makespan of production orders. Therefore, in case of 
multiproduct production flow different local dispatching rules may lead to different schedules, 
preferring different among concurrently executed production orders.  
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In that context the relevant questions concerns of: What is the production system cycle 
guaranteeing the admissible makespan of assumed production orders? What are the dispatching 
rules, if any, enabling to switch the production system from a given cyclic steady state to 
another assumed one? 

For the sake of illustration of such concurrently flowing cyclic processes control lest us 
consider the SCCP shown in Fig. 14. Assume an initial state and a set of priority dispatching 
rules as follows:  

 
 b� � ���, ª�
, (45) 
 �� � ���, ∆, ∆, ��, ∆, ��, ��
, ª� � ���, ��, ��, ��, ��, �� , ��
, (46) 

 
and 

 
 B � 'D�, D�, D�, D�, D�, D�, D�)  (47) 
 D� � ���, ��
, D� � ���
, D� � ���, ��
, D� � ���, ��
, D� � ���, ��, ��
, (48) D� � ���, ��
, D� � ���
. 

 
From the initial state (45) the state belonging to the cyclic steady state b�� the cycle of  

which is equal to 9 can be reached. In such steady state the state b� can be obtained. Changing 
the semaphores in this state enables to reach the new cyclic steady state b�� with the period 
equal to 7, see Fig. 15. 

That should be noted that transition between the state b� and b� does not follow the rules 
(12)÷(18) of the condition §. The transition considered can be seen as result of an external 
influence (control) aimed at changing some coordinates of the sequence ª. Such kind of states 
transition control is defined as follows::  

Assume the states b£ � ��£ , ª£
, b® � ��® , ª®
 are feasible: b£, b® 5 ­. The state ¬¯ can 
be seen as a consequence of the state’s ¬« semaphore control if the following conditions 
hold: 

 
 �£ � �® (49) 
 ª£ ¶ ª®  (50) 

 
Transition between states b£, b® being a semaphore ª control is denoted in the following 

way b£  Ê Z b® (for instance  b�  Ê Z b�).  
For example another switch from the cyclic steady state b�� to b�� can be obtained by the 

relevant semaphores control, e.g., b��  Ê Z b�� (Fig. 15). 
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Fig. 15 An example of transition between two cyclic steady states 

 
To summarize, transitions between cyclic steady states (e.g.,  b�� and b��) can be realized 

as a consequence of semaphore control as well as processes allocation and/or priority rules 
control. In general case such control actions should be undertaken assuming the minimal 

disturbances (costs) in SCCP execution. For instance, the transition b�  Ê Z b� was realized in the 
consequence of a unique semaphore change, i.e., the semaphore associated to the resource S� 
not allotted by any process. The same processes flow distribution free transition took place in 

the case b��  Ê Z b�� (see the Gantt’s chart Fig. 16). 
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Fig. 16 Gantt’s chart of the SCCP behavior corresponding with transition between two cyclic 

steady states  
 

4.2 Concurrently flowing production processes control 

 
Introduced concept of state space allows to consider different categories of states (e.g. 

initial and deadlock states) as well as different periods (e.g. transient and cyclic steady state). 
Each state determines current processes allocation at the given set of resources and semaphores 
determining the processes intended for direct allocation at resources in the succeeding states. It 
means each state specify the system resources status, i.e., determining whether the particular 
resource is unoccupied or occupied (either by a process waiting for access to succeeding 
resource or just by one executing its operation) at the moment as well as processes expected to 
access them the next. 

In models considered the workplaces (machine tools, warehouses, etc.) or segments of 
AGVS transportation routes play a role of system resources. So, assuming the sequence of 
alternatively following each other machine tools and transportation route segments determines 
a manufacturing route, the manufacturing routes of two concurrently executed production 
flows can be modeled by the SCCP system as shown in Fig. 17. 

An idea of multiproduct production flow modeling, shown in Fig. 17, assumes a given 
layout of manufacturing system, i.e. machine tools and AGVS as well as structure of 
transportation path segments (see Fig. 17a)), and the SCCP model of local manufacturing 
routes following sequences of alternatively occurring machine tools and paths’ segments 
passed by AGVs (see Fig. 17b)). In case considered the manufacturing routes followed then by 
local cyclic processes can be seen as sequences: 

 
 �� �  �2Í�, ?�, 2Í�,  2Í�,  ?�,  2Í�,  2Í�,  ?�,  2Í�
, (51) 
 �� �  �2Í��, ?�, 2Í��,  2Í�,  ?�,  2Í�,  2Í�,  2Í��,  2Í�� ?�,  2Í��
, (52) 
  �� �  �2Í��, ?�, 2Í��,  2Í��,  2Í�,  ?�,  2Í�
. (53) 
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The manufacturing routes (51), (52), (53) describe routes of cyclic processes  ��, �� and �� 
of SCCP from Fig. 17. 

 

 
Fig. 17 Modeling the FMS in terms of SCCP. a) layout of the FMS, b) 

 
In turn, assuming the warehouses and linked to them input and output segments of 

transportation routes, as well as the machine tool ?� and associated segments 2Í�, 2Í� can be 
treated as a kind of critical sections (distinguished by dashed lines see Fig. 17 a)), the resultant 
SCCP model is shown in Fig. 18.  

That is easy to note that in the SCCP model from Fig. 17, besides of local cyclic processes ��, ��, and �� one can assume the new one, e.g., ��� described by ��� � �Î, 2Í�, ?�, 2Í�,  2Í�,  ?�,  2Í�,  2Í�,  2Í��,  2Í��, ?�,  2Í��, Î
 following the model from the Fig. 17 b), i.e. the ��� � �Î�, ?�,  2Í��,  ?�,  Î�
 following the model from the Fig. 18. This new manufacturing 
route is called multi-modal cyclic process and distinguished in SCCP model (see Fig. 18) by 
the bold dashed line.  

In order to simplify further considerations let us assume the AGVs servicing particular 
transportation routes are disposable for any machine tool in the manufacturing routes serviced. 
However, they cannot deliver workpieces to the machine tool being already occupied by other 
workpieces. In this context, �
 � delivers to ?�  the workpiece processed by ?�, then after 
machining on the ?� the �
 �delivers it to ?�, and finally to Î�. 
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Fig. 
18 The SCCP model of the FMS from Fig. 17 a) 

 
In order to take into account such a new kind of multi-modal cyclic processes let us extend 

the concept of state space introduced in the Section 3.1. Consider the set of multi-modal cyclic 
processes each one employing resources of the more than one local cyclic manufacturing route: 

 
 �� � '���,  ���, … ,  ��%¹),   (54) 

 
where: ���  – the �-th multi-modal cyclic processes. 

Each manufacturing processes ���  is specified by manufacturing route ��� � �S�j , S�O , . . . , S��¦ �¡

, ¢£ 5 '1,2, … , C), S�¥ 5 S, where ¤����
 denotes a length of 

manufacturing process route and C denotes number of resources. For example  process ��� 
from Fig. 18 is specified in the following way: ��� � �Î�, ?�, ?�,  2Í��,  ?�,  Î�
 
. All of the 
manufacturing routes belong to the set of manufacturing routes: � '��� , ���, . . . , ��%¹) . 

That means the new, extended model of the �-th state has the form:  
 

 b£ � ��£,  ª£ , ��£
,  (55) 
 

where: �£, ª£ – defined as in (7), ��£ � ����£, ���£, … , ��T£
 – the sequence of manufacturing process allocation, ��� 5 �� c '∆) determines the operation from manufacturing process ��� 5 �� 
executed on the resource S�. 

Consequently, the conditions (12) ÷ (18) defining b£  ¸ Z  b® have to be supplemented by the 
following ones: 

�
 � 

- the resource S£ occupied by 
the process  ��  

- the resource S£ occupied by the process �� 
and controlled by the priority rule D£ � ��, §
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 h�5'�,�,…,T)+��� £ � ∆
 ´ ����® � ���£
.,  (56) 

 h�5'�,�,…,T)+���£ ¶ ∆
 ± ���® ¶ ∆
 ´ ����® � ���£
.,  (57) 
 h�5'�,�,…,T)+��� £ ¶ ∆
 ± ���® � ∆
 ± ����£ � ∆
 ´ ����® � ∆
.,   (58) h�5'�,�,…,T)����£ ¶ ∆
 ± ��� ® � ∆
 ± ����£ ¶ ∆
 ± �d�����£
 � d����£
� ´ ����® � ∆
 ±l 

 ± lI��k¡�WÏ¡¥�® � ���£Nµ ,  (59) h�5'�,�,…,T)����£ ¶ ∆
 ± ��� ® � ∆
 ± ����£ ¶ ∆
 ± �d�����£
 ¶ d����£
�l ´ 
 l´ ����® � ���£
. (60) 
 

where: C – a number of resources,  d����
 – means the index of resource directly succeeding the resource S�, in the ¢-th 
process route �� (or  manufacturing route ���), d����
  5 '1,2, … , C). 

In such extender model of SCCP state space, the new questions can be stated, e.g., Is it 
possible to realize production orders specified by �� (and r�) under constraints imposed by � 
(and r) and set of priority dispatching rules B? What are the priority dispatching rules, if any, 
guaranteeing the production orders specified by �� (and r�) will be completed in a given time 
horizon H? It should be noted, that processes executing production orders specified by �� (and r�) are also cyclic ones. 

Therefore, the considered problem of cyclic processes scheduling can be stated in the 
following way: Given a manufacturing system following modeling conditions of SCCP’s state 
space. The multi-product scheduling problem has the goal to find a schedules which fulfill the 
time requirements of the production orders and is feasible under constraints imposed by the 
given manufacturing system. 

In order to illustrate its possible instance focusing on finding up the dispatching rules 
enabling to consider different cyclic steady states and the sates enabling to switch from one 
cyclic steady sates to another lest us consider the following example.  

Given SCCP model from Fig. 2. Consider initial state (20) and priority dispatching rules 
(21), as in Section 3.1. Assume two manufacturing processes ���, ��� specified by the 
following manufacturing routes:  

 
 ��� �  �S�, S�, S�, S�
, (61) 
 ��� �  �S�, S�, S�, S�
. (62) 
 
In the SCCP following manufacturing routes structure from Fig. 2 the two cyclic steady 

states can be observed, see Fig. 4. Illustration of possible ���, ��� execution in the case of 
cyclic steady state with period �� � 7 is shown in Fig. 19. 

In case considered the cycle time of the process executed along the ��� equals to 14 units of 
time, while in case of the ��� equals to 7 units of time. The similar situation, however 
concerning the cyclic steady states with period equal to 9 is show in Fig. 20.  

Note that in case of longer cyclic steady state the cycle time of the production process 
following the ��� is shorter than in case of cyclic steady state and equals to 9 units of time. 
That is in cost, however of extension of the cycle time of the manufacturing process following 
the ���, i.e. changing from 7 to 9 units of time. So, changes among different cyclic steady 
states may lead to significant changes of manufacturing processes periods. That means the 
flows of concurrently executed processes can be controlled by mean of cyclic steady state 
control. The work in progress and the length of the makespan can serve as objective function. 



66 
 

To summarize, in case the goal functions of particular simultaneously executed processes have 
to change the response to the following question plays a pivotal role: Does there exist a set of 
states allowing one to switch among given set of cyclic steady states guaranteeing the 
execution of production processes will free of interruptions (i.e. of delays)?  

 

 
 

Fig. 19 Illustration of possible ���, ��� execution in case of cyclic steady state with the period 
equal to �� � 7 

 

 
 

Fig. 20 Illustration of possible ���, ��� execution in case of cyclic steady state with the period 
equal to �� � 9 
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In order to illustrate such a possibility let us consider the SCCP from Fig. 2, where for the 
state b�(see Fig. 15) in the cyclic steady state of the cycle equal to 9 one is looking for switch 
to the cyclic steady state of the cycle equal to 7. 

 

 
 

Fig. 21 Illustration of possible ���, ��� execution in case of switch from cyclic steady state 
with the period equal to �� � 9 to cyclic steady state with the period equal to  �� � 7 

 
Manufacturing process ��� distinguished by the dashed line (see Fig. 21) completes just 

before its next execution in cyclic steady state length of 7. In turn, the manufacturing process ��� do not change itself. The switch considered was caused by the semaphore change in the 
state b� on the Fig 15:  

 

 b�  Ê Z b� (63) 
 

where the semaphore in the b� is: ª� � ���, ��, ��, ��, ��, ��, ��
, and the semaphore in the b� 
is: ª� � ���, ��, ��, �� , ��, ��, ��
. 

The problem how such changes can be find, in ever, in general case still remains the open 
one. 

From the example discussed above it follows that cyclic processes scheduling problems can 
be approached either in off-line or in on-line mode. In the first case, recommended by the 
example, the procedures supporting the decision making in the case of some routine tasks can 
be easily proposed. In the second case, however, any searching process has to be preceded by 
evaluation of possible values of the cycle period, i.e. solution of relevant set od Diophantine 
equations. 
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5. CONCLUDING REMARKS 
 
The way an enterprise’s production capacity is used decides about its competitiveness. In 

that context studies aimed at designing of decision support systems (DSS) dedicated to discrete 
processes scheduling, and especially cyclic scheduling are of primary importance. A cyclic 
scheduling problem is a scheduling problem in which some set of activities is to be repeated an 
indefinite number of times, and it is desired that the sequence be repeating.  

The approach proposed based on the SCCP concept involve Diophantine equations 
modeling. solutions of the Diophantine equations provides evaluations of the possible cycle 
periods of systems considered, and then evaluation of possible makespans of concurrently 
executed production orders. Since Diophantine equations can be treated as a set of constraints, 
the constraint programming [1, 2, 3], i.e. descriptive in their character, languages can be 
directly implemented. 

 Assuming the SCCP specification encompass system structure while the set of features 
reflect the system behavior, one can state the following general questions: 

Does there exist a control procedure enabling to guarantee an assumed system behavior 
subject to system’s structure constraints? 

Does there exist the system’s structure such that an assumed system behavior can be 
achieved? 

In this context, taking into account non decidability of Diophantine problems one can easily 
realize that not all behaviors can be obtained under constraints imposed by system’s structure. 
The similar observation concerns the system’s behavior that can be achieved in systems 
possessing specific structural characteristics. That means, the exhaustive searching for assumed 
control can be replaced by the step-by-step structural designing guaranteeing the required 
system behavior. That way, that is our believe, leads to solutions based on sufficient conditions 
allowing one to compose elementary systems as to obtain the final one possessing required 
quantitative and qualitative behavioral features.  
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