Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Twin-screw extrusion is a crucial method for the direct inserting of carbon micro- and nanomaterials into a polymer matrix using a dry procedure. The study aimed to determine the influence of the parameters of the twin-screw extruder plasticizing system on the dispersion homogeneity and distribution of graphite filler in the polylactide polymer matrix and overall quality of the composite. As a filler, a graphite micropowder with a 5 μm lateral size of platelets was used at concentration of 1 wt.%. Three configurations of screws with different mixing intensity and various types segments were considered in the extrusion experiments. Morphology and chemical structure of the obtained composites were examined using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy – attenuated total reflectance (FTIR-ATR) and Raman spectroscopy. Differential scanning calorimetry (DSC) and melting flow rate measurements (MFR) were used to asses thermal and rheological properties of the composites. Samples of the polylactide/graphite composites were also subjected to mechanical tests. The results show that the selection of the mechanical parameters of twin-screw extruder plasticizing system plays a key role in the preparation of the homogeneous PLA/graphite composites. Incorrect selection of the screw geometry results in poor mixing quality and a significant deterioration of the mechanical and thermal properties of the composites. Optimised mixing and extrusion parameters can be the starting point for the design of efficient twin-screw extruder plasticizing system for fabrication of PLA composites with carbon nanotube and graphene fillers.
Czasopismo
Rocznik
Tom
Strony
316--324
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
- Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
autor
- Łukasiewicz Research Network Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
autor
- Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
autor
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
autor
- Łukasiewicz Research Network Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
autor
- Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland
Bibliografia
- 1. Taib N-AAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, Julaihi MRMB, Khan A. A review on poly lactic acid (PLA) as a bio-degradable polymer. Polym Bull, 2022.
- 2. Banerjee R, Ray SS. Sustainability and Life Cycle Assessment of Thermoplastic Polymers for Packaging: A Review on Fundamental Principles and Applications. Macromolecular Materials and Engineer-ing, 2022; 307:2100794.
- 3. Siracusa V, Blanco I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Poly-mers, 2020;12:1641.
- 4. Jenck JF, Agterberg F, Droescher MJ. Products and processes for a sustainable chemical industry: a review of achievements and pro-spects. Green Chem,2004; 6:544–556.
- 5. Kaplan DL. Introduction to Biopolymers from Renewable Resources. In: Kaplan DL (ed) Biopolymers from Renewable Resources. Spring-er, Berlin, Heidelberg, 1998; 1–29.
- 6. Kümmerer K. Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem, 2007; 9: 899–907.
- 7. Androsch R, Di Lorenzo ML. Synthesis, Structure and Properties of Poly(lactic acid), 1st ed. 2018.
- 8. Hu R-H, Ma Z-G, Zheng S, Li Y-N, Yang G-H, Kim H-K, Lim J-K. A fabrication process of high volume fraction of jute fiber/polylactide composites for truck liner. Int J Precis Eng Manuf, 2012;13: 1243–1246.
- 9. Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, Bennani B, Dubois P. Tailoring polylactide (PLA) properties for auto-motive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 2014; 36:1–9.
- 10. Sevostyanov MA, Kaplan MA, Nasakina EO. Development of a Biodegradable Polymer Based on High-Molecular-Weight Polylactide for Medicine and Agriculture: Mechanical Properties and Biocompati-bility. Dokl Chem, 2020; 490:36–39.
- 11. Tertyshnaya Y, Jobelius H, Olkhov A, Shibryaeva L, Ivanitskikh A. Polylactide Fiber Materials and their Application in Agriculture. Key Engineering Materials. 2022; 910:617–622.
- 12. Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM, Graça L, Sá Gaspar R, Préat V, Florindo HF. Poly(lactic acid)-based par-ticulate systems are promising tools for immune modulation. Acta Bi-omaterialia, 2017; 48:41–57.
- 13. Sullivan MP, McHale KJ, Parvizi J, Mehta S. Nanotechnology. The Bone & Joint Journal, 2014; 96-B:569–573.
- 14. Zhou J, Yu J, Bai D, Lu J, Liu H, Li Y, Li L. AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron, 2021;32:6080–6093.
- 15. Al-Attar H, Alwattar AA, Haddad A, Abdullah BA, Quayle P, Yeates SG. Polylactide-perylene derivative for blue biodegradable organic light-emitting diodes. Polymer International, 2021; 70:51–58.
- 16. Ahmed J, Mulla M, Jacob H, Luciano G, T.b. B, Almusallam A. Pol-ylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packaging and Shelf Life, 2019; 21:100355.
- 17. Ahmed J, Mulla MZ, Al-Zuwayed SA, Joseph A, Auras R. Morpholog-ical, barrier, thermal, and rheological properties of high-pressure treated co-extruded polylactide films and the suitability for food pack-aging. Food Packaging and Shelf Life, 2022; 32:100812.
- 18. Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 2013; 38:1504–1542.
- 19. Malinowski R, Raszkowska-Kaczor A, Moraczewski K, Głuszewski W, Krasinskyi V, Wedderburn L. The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(ε-Caprolactone) Compo-sites Modified by Electron Beam Irradiation. Applied Sciences, 2021; 11:5317.
- 20. Thakur KAM, Kean RT, Zupfer JM, Buehler NU, Doscotch MA, Munson EJ. Solid State 13C CP-MAS NMR Studies of the Crystallini-ty and Morphology of Poly(l-lactide). Macromolecules, 1996; 29:8844–8851.
- 21. Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of ma-terial properties, biodegradability and melt rheology. Polymer, 2003; 44:857–866.
- 22. Fiedurek K, Szroeder P, Macko M, Raszkowska-Kaczor A, Puszczy-kowska N. Influence of the parameters of the extrusion process on the properties of PLA composites with the addition of graphite. IOP Conf Ser: Mater Sci Eng, 2021 1199:012057.
- 23. Gonçalves C, Gonçalves IC, Magalhães FD, Pinto AM. Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Re-view. Polymers,2017; 9:269.
- 24. Lim L-T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science,2008; 33:820–852.
- 25. Perepelkin KE. Polylactide Fibres: Fabrication, Properties, Use, Prospects. A Review. Fibre Chemistry, 2002; 34:85–100.
- 26. Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 2018; 107:2246–2255.
- 27. Tümer EH, Erbil HY. Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings, 2021; 11:390.
- 28. Cicala G, Giordano D, Tosto C, Filippone G, Recca A, Blanco I. Polylactide (PLA) Filaments a Biobased Solution for Additive Manu-facturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Materials, 2018; 11:1191.
- 29. Ghasem N, Al-Marzouqi M, Abdul Rahim N. Effect of polymer extru-sion temperature on poly(vinylidene fluoride) hollow fiber mem-branes: Properties and performance used as gas–liquid membrane contactor for CO2 absorption. Separation and Purification Technolo-gy, 2012; 99:91–103.
- 30. Schweighuber A, Felgel-Farnholz A, Bögl T, Fischer J, Buchberger W. Investigations on the influence of multiple extrusion on the degra-dation of polyolefins. Polymer Degradation and Stability, 2021; 192:109689.
- 31. Kosmalska D, Janczak K, Raszkowska-Kaczor A, Stasiek A, Ligor T. Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments, 2022; 9:57.
- 32. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Sid-diqui H, Hoque ME. Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Materials Science and En-gineering, 2016; C 67:792–806.
- 33. Pan J, Bian L. A physics investigation for influence of carbon nano-tube agglomeration on thermal properties of composites. Materials Chemistry and Physics, 2019; 236:121777.
- 34. Tamayo-Vegas S, Muhsan A, Liu C, Tarfaoui M, Lafdi K. The Effect of Agglomeration on the Electrical and Mechanical Properties of Pol-ymer Matrix Nanocomposites Reinforced with Carbon Nanotubes. Polymers, 2022; 14:1842.
- 35. Canevarolo SV, Babetto AC. Effect of screw element type in degra-dation of polypropylene upon multiple extrusions. Advances in Poly-mer Technology, 2002; 21:243–249.
- 36. Zou D, Zheng X, Ye Y, Yan D, Xu H, Si S, Li X. Effect of different amounts of bamboo charcoal on properties of biodegradable bamboo charcoal/polylactic acid composites. International Journal of Biologi-cal Macromolecules, 2022; 216:456–464.
- 37. Aversa C, Barletta M, Gisario A, Pizzi E, Prati R, Vesco S. Corotating twin-screw extrusion of poly(lactic acid) PLA/poly(butylene succinate) PBS/ micro-lamellar talc blends for extrusion blow molding of bi-obased bottles for alcoholic beverages. Journal of Applied Polymer Science, 2021 138:51294.
- 38. Kaczor D, Fiedurek K, Bajer K, Raszkowska-Kaczor A, Domek G, Macko M, Madajski P, Szroeder P. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials, 2021; 14:5346.
- 39. Kaczor D, Bajer K, Domek G, Raszkowska-Kaczor A, Szroeder P. The method of obtaining polymer masterbatches based on polylac-tide with carbon filler. IOP Conf Ser: Mater Sci Eng, 2021; 1199:012058.
- 40. PN-EN ISO 11357-(1-3):2009 Tworzywa sztuczne - Różnicowa kalorymetria skaningowa (DSC) - Część 1: Zasady ogólne; Część 2: Wyznaczanie temperatury zeszklenia i stopnia przejścia w stan szkli-sty; Część 3: Oznaczanie temperatury oraz entalpii topnienia i krysta-lizacji.
- 41. Silva M, Gomes C, Pinho I, Gonçalves H, Vale AC, Covas JA, Alves NM, Paiva MC. Poly(Lactic Acid)/Graphite Nanoplatelet Nanocompo-site Filaments for Ligament Scaffolds. Nanomaterials, 2021; 11:2796.
- 42. Batakliev T, Georgiev V, Kalupgian C, Muñoz PAR, Ribeiro H, Fechine GJM, Andrade RJE, Ivanov E, Kotsilkova R. Physico-chemical Characterization of PLA-based Composites Holding Carbon Nanofillers. Appl Compos Mater, 2021; 28:1175–1192.
- 43. PN-EN ISO 1133-1:2011 Tworzywa sztuczne - Oznaczanie maso-wego wskaźnika szybkości płynięcia (MFR) i objętościowego wskaź-nika szybkości płynięcia (MVR) tworzyw termoplastycznych - Część 1: Metoda standardowa.
- 44. PN-EN ISO 294-1:2017-07 Tworzywa sztuczne - Wtryskiwanie kształtek do badań z tworzyw termoplastycznych - Część 1: Zasady ogólne, formowanie uniwersalnych kształtek do badań i kształtek w postaci beleczek.
- 45. PN-EN ISO 527-1:2020-01 Tworzywa sztuczne - Oznaczanie wła-ściwości mechanicznych przy statycznym rozciąganiu - Część 1: Za-sady ogólne.
- 46. PN-EN ISO 179-2:2020-12 Tworzywa sztuczne - Oznaczanie udar-ności metodą Charpy’ego - Część 2: Instrumentalne badanie udar-ności.
- 47. Yuniarto K, Purwanto YA, Purwanto S, Welt BA, Purwadaria HK, Sunarti TC. Infrared and Raman studies on polylactide acid and pol-yethylene glycol-400 blend. AIP Conference Proceedings, 2016; 1725:020101.
- 48. Kister G, Cassanas G, Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 1998; 39:267–273.
- 49. Amorin NSQS, Rosa G, Alves JF, Gonçalves SPC, Franchetti SMM, Fechine GJM. Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Ap-plied Polymer Science, 2014 131, 40023.
- 50. Qin D, Kean RT. Crystallinity Determination of Polylactide by FT-Raman Spectrometry. Appl Spectrosc, 1998; 52:488–495.
- 51. Signori F, Coltelli M-B, Bronco S. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stabil-ity, 2009; 94:74–82.
- 52. Cock F, Cuadri AA, García-Morales M, Partal P. Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters. Polymer Testing, 2013; 32:716–723.
- 53. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of poly(lactic acid): Characterization of chemical struc-ture, thermal stability and mechanical properties. Polymer Degrada-tion and Stability, 2010; 95:116–125.
- 54. Mainil-Varlet P, Hauke C, Maquet V, Printzen G, Arens S, Schaffner T, Jérôme R, Perren S, Schlegel U. Polylactide implants and bacteri-al contamination: An animal study. Journal of Biomedical Materials Research, 2001; 54:335–343.
- 55. Usachev SV, Lomakin SM, Koverzanova EV, Shilkina NG, Levina II, Prut EV, Rogovina SZ, Berlin AA. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products. Thermo-chimica Acta, 2022; 712:179227.
- 56. Mngomezulu ME, Luyt AS, John MJ. Morphology, thermal and dy-namic mechanical properties of poly(lactic acid)/expandable graphite (PLA/EG) flame retardant composites. Journal of Thermoplastic Composite Materials, 2019; 32:89–107.
- 57. Harmandaris VA, Daoulas KCh, Mavrantzas VG. Molecular Dynam-ics Simulation of a Polymer Melt/Solid Interface: Local Dynamics and Chain Mobility in a Thin Film of Polyethylene Melt Adsorbed on Graphite. Macromolecules, 2005; 38:5796–5809.
- 58. Mysiukiewicz O, Barczewski M, Skórczewska K, Matykiewicz D. Correlation between Processing Parameters and Degradation of Dif-ferent Polylactide Grades during Twin-Screw Extrusion. Polymers, 2020; 12:1333.
- 59. Przekop RE, Kujawa M, Pawlak W, Dobrosielska M, Sztorch B, Wieleba W. Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements. Polymers, 2020; 12:1250.
- 60. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability, 2010; 95:889–900.
- 61. Żenkiewicz M, Richert J, Rytlewski P, Richert A. Comparative analy-sis of shungite and graphite effects on some properties of polylactide composites. Polymer Testing, 2011; 30:429–435.
- 62. Kim I-H, Jeong YG. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymer Science Part B: Polymer Physics, 2010; 48:850–858.
- 63. Żenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczyńska M, Karasiewicz T. Characterisation of multi-extruded poly(lactic acid). Polymer Testing, 2009; 28:412–418.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca22650c-8e52-4d67-990f-83496443aa0f