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Abstract: Twin-screw extrusion is a crucial method for the direct inserting of carbon micro- and nanomaterials into a polymer matrix using 
a dry procedure. The study aimed to determine the influence of the parameters of the twin-screw extruder plasticizing system  
on the dispersion homogeneity and distribution of graphite filler in the polylactide polymer matrix and overall quality of the composite.  
As a filler, a graphite micropowder with a 5 μm lateral size of platelets was used at concentration of 1 wt.%. Three configurations of screws 
with different mixing intensity and various types segments were considered in the extrusion experiments. Morphology and chemical  
structure of the obtained composites were examined using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy – 
attenuated total reflectance (FTIR-ATR) and Raman spectroscopy. Differential scanning calorimetry (DSC) and melting flow rate  
measurements (MFR) were used to asses thermal and rheological properties of the composites. Samples of the polylactide/graphite  
composites were also subjected to mechanical tests. The results show that the selection of the mechanical parameters of twin-screw  
extruder plasticizing system plays a key role in the preparation of the homogeneous PLA/graphite composites. Incorrect selection  
of the screw geometry results in poor mixing quality and a significant deterioration of the mechanical and thermal properties  
of the composites. Optimised mixing and extrusion parameters can be the starting point for the design of efficient twin-screw extruder  
plasticizing system for fabrication of PLA composites with carbon nanotube and graphene fillers. 

Key words: differential scanning calorimetry, extrusion, graphite, infrared spectroscopy, mechanical properties, melting flow rate,   
                     plasticizing system, polylactide, twin-screw extruder 

1. INTRODUCTION 

Traditional polymers, obtained from crude oil, are nowadays 
increasingly being replaced by their equivalents produced from 
renewable sources. Their use reduces environmental pollution, 
greenhouse gas emissions and the consumption of fossil re-
sources [1–6]. Polylactide (PLA), also known as poly(lactic acid), 
is the oldest and one of the most interesting and useful biode-
gradable polymers. Currently, PLA has a principal position on the 
market of biodegradable polymers [7]. Several applications of 
PLA-based polymers have been developed in the automotive [8, 
9], agricultural [10, 11], medicine [12, 13], electronic [14, 15] and 
packaging [16, 17] industries. 

To improve mechanical, thermal and electrical properties of 
PLA for industrial and commodity applications, various types of 
fillers have been added: nanomaterials [18], organic fibres [19], 
talc [20], montmorillonite [21] and graphite [22]. Carbon nano-
materials such as carbon nanotubes and graphene with superior 
thermal and electrical properties can be used as a filler that im-
proves some specific properties, such as stiffness, thermal stabil-
ity, fire retardancy and lower permeability [23].  

Due to its high versatility, PLA is processed using the same 

methods as other popular polymers: injection and compression 
moulding, spinning, extrusion or 3D printing [24–28]. 

Extrusion has been widely used in the manufacture of films, 
sheets, pipes and profiles. This processing technique can be used 
for preparation of polylactide composites containing a wide range 
of additives. The advantages of the extrusion include high effi-
ciency, quality and repeatability, and possibility of mass produc-
tion and of obtaining multi-component composites in one techno-
logical process. The quality and thus the properties of polymer 
composites obtained by extrusion are affected by both the extru-
sion temperature [29] and processing speed [30]. The configura-
tion of the extruder plasticizing system plays a key role in the 
dispersion quality of the filler in the polymer matrix and the proper-
ties of final composites [31]. High-quality polymer composites are 
characterised by an excellent dispersion of the filler. Undispersed 
filler agglomerates exercised a negative effect on mechanical [32], 
thermal [33] and electrical properties [34] of obtained composites.  

Good dispersion can be obtained using plasticizing systems 
characterised by high mixing and grinding abilities. However, the 
use of such systems may have a negative effect in terms of 
change in the degree of polymer degradation [35].  

The innovation of work involves the selection of an optimal 
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plasticizing system of a twin-screw extruder with the preferred 
processing parameters required to obtain PLA composites with an 
excellent dispersion of graphite fillers and without significant 
changes in polymer properties. The developed system will be 
used for further research on composites with carbon nanotubes 
and graphene as similar fillers. Currently, there is little information 
on the optimal configuration of screws in the processing of PLA 
with carbon fillers of this type. 

2. MATERIALS AND SAMPLE PREPARATION 

Graphite micropowder, MG3096 (3000 mesh), used as a car-
bon filler, was purchased from Sinograf S.A. Company (Poland). 
The polylactide (PLA) produced by Total-Corbion (Netherlands), 
available under the trade name Luminy® LX175 (sample marked 
as PLA/TC), was used as a matrix in the obtained polymer mas-
terbatches and composites. For obtaining masterbatches, before 
mixing, PLA was ground into powder form with a particle size of 
100–600 µm. Typical properties of used PLA are shown in Table 
1 [36, 37]. 

Tab. 1. Typical properties of Luminy® LX175 

Properties Method Typical value 

Density Literature value 1.24 g/cm3 

Stereochemical 
purity 

Total-Corbion PLA method 96% (L-isomer) 

Residual monomer Total-Corbion PLA method ≤0.3% 

Melting temperature DSC 155 °C 

Glass transition 
temperature 

DSC 60 °C 

2.1. Masterbatch preparation  

Masterbatch was prepared by mixing 30 g of polylactide with 
10 g of graphite powder in a mixer (50 EHT Brabender Plasti-
Corder® Lab-Station Germany), at 190 °C and 50 rpm. 

Before the mixing process, PLA was dried in the POL-EKO 
SLW 180 STD dryer at temperature 80 °C for 8 h. Preparation of 
the masterbatch in the mixer was carried out in two stages. In the 
first, PLA was melted for 2.5 min; in the second, graphite powder 
was added and the mixture was stirred for 2 min. The properties 
of obtained masterbatch are available in our published papers 
[38, 39]. 

2.2. Composites preparation 

The tested composites containing 1% graphite were extruded 
using 960 g of pristine PLA with 40 g of masterbatch. The extru-
sion process was carried out using a twin-screw extruder (Bühler 
BTSK, Uzwil, Switzerland) with a screw diameter of 20 mm and a 
screw length of 790 mm. All samples were extruded at the same 
main drive speed: 150 rpm; and temperature profile: 180 °C, 
180 °C, 190 °C, 190 °C or 195 °C (head). The following parame-
ters were registered during the extrusion process: changes of the 
temperature in each extruder zone, stock temperature, torque of 
the main drive, power of the main drive and the process efficiency. 
Before extrusion, polylactide and masterbatch were dried in a 

dryer for 8 h at 80 °C. Three configurations of screws with differ-
ent mixing intensities and various types of mixing segments were 
used to prepare samples.  

 
Fig. 1. Drawings of the screw systems: (A) K1; (B) K3; (C) K5 

The K1 system, shown in Figure 1A, is characterised by two 
zones with low intensity mixing and shearing functions. In the first 
zone, two neutral kneading elements KBW 90/3/15 were used and 
in the second zone, two forward kneading elements KBW 45/5/20 
were used. 

The K3 screw system shown in Figure 1B has a higher inten-
sity than the K1 system, and it includes four mixing and shearing 
zones. The first zone of the screw system consists of two knead-
ing elements KBW 90/2/15 and KBW 45/5/20. The subsequent 
zones have forward kneading elements and an additional reverse 
kneading element KBW 45/5/20. The reverse element holds the 
polymer in the zone for longer, resulting in more intense mixing, 
but this can lead to the degradation of PLA. 

K5, shown in Figure 1C, is a strong mixing and degrading sys-
tem. We included this in our study to observe the effect of strong 
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mixing on PLA matrix. The system includes three mixing–shearing 
zones. Each one contains a reverse kneading element, which 
causes a significant increase in mixing. 

Neat polymers (PLA/NG) and polylactide-graphite com-
posites (PLA/G) prepared using one of the three plasticizing 
systems (K1, K3, or K5) are listed in Table 2. 

Tab. 2. Labelling and processing methods of PLA/graphite composites 

Sample 
Graphite content 

(%) 
Plasticizing 

system 

PLA/NG/K1 0 K1 

PLA/G/K1 1 K1 

PLA/NG/K3 0 K3 

PLA/G/K3 1 K3 

PLA/NG/K5 0 K5 

PLA/G/K5 1 K5 

3. MATERIALS CHARACTERISATION 

3.1. Phase morphology analysis  

To evaluate the dispersion of graphite in the polymer matrix, 
scanning electron microscopy (SEM, SU8010, Hitachi, Japan) 
was used. For SEM imaging, samples were deposited on conduc-
tive carbon adhesive tape and coated with a nanometrical layer of 
gold. Gold was used to increase the surfaces’ electrical conductiv-
ity in the tested samples. All microscopic observations were made 
at the accelerating voltage of 10 kV and a working distance of 8 
mm.  

3.2. Chemical structure analysis 

Fourier transform infrared spectroscopy – attenuated total re-
flectance spectra were measured using the Cary 630 FTIR-ATR 
spectrometer (Agilent Technologies, USA). Measurements were 
carried out over the spectral range of 400–4000 cm–1 with a reso-
lution of 2 cm–1. 

Raman spectra were recorded in backscattering geometry, 
with a Senterra Raman microscope (Bruker Optik, Billerica, MA, 
USA), using a 2-mW laser beam with a wavelength of 532 nm as 
an excitation light source. 

Both the FTIR-ATR and Raman spectra were acquired at am-
bient temperatures.  

3.3. Thermal behaviour and stability analysis 

The Mettler Toledo (Switzerland) DSC1 calorimeter was used 

to perform differential scanning calorimetry. The calorimeter was 
calibrated with pure indium and zinc standards. All samples were 
tested under nitrogen atmosphere, at a gas flow rate of 50 
cm3/min. Each sample of 5–7 mg was sealed in aluminium cruci-
ble. DSC analysis was divided into five stages: 

 First stage (heating 1): the samples were heated at a constant 
rate of 10 °C/min from 0 °C to 300 °C. 

 Second stage: this was an isothermal stage lasting 5 min. 

 Third stage: the samples were cooled at a rate of 10 °C/min to 
0 °C. 

 Fourth stage: this was an isothermal stage lasting 5 min. 

 Fifth stage (heating 2): the samples were heated at a constant 
rate of 10 °C/min from 0 °C to 300 °C. 
The analyses were performed in accordance with the PN-EN 

ISO 11357-(1-3): 2009 standards [40].  
The decomposition temperature of the Luminy® LX175 in ni-

trogen atmosphere is above 300 °C [41]. 

The room temperature crystallinity, 𝑋𝐶  (1), of PLA compo-
sites was evaluated using the following formula: 

𝑋𝐶 = (
∆𝐻𝑚−∆𝐻𝑐𝑐

𝑤∆𝐻𝑚
0 ) · 100%  (1) 

where 𝑋𝐶represents PLA crystallinity, ∆𝐻𝑚  melting enthalpy, 

∆𝐻𝑐𝑐  cold crystallisation enthalpy (J/g), w fraction of the polymer 

in the composite materials and ∆𝐻𝑚
0  melting enthalpy of 100% 

crystalline PLA (93 J/g) [42]. 

3.4. Rheological properties  

The melt flow rate of the composites was determined accord-
ing to the PN-EN ISO 1133:2011 standard [43] using a Dynisco 
(USA) LMI 4003 capillary plastometer. The measurements were 
carried out under the piston loading of 2.16 kg at 190 C. Samples 
were dried before measurement for 8 h at 80 °C in a drier. 

3.5. Mechanical properties 

To perform tensile and Charpy impact tests, normalised 
dumbbells and bars were prepared using a laboratory injection 
moulding type Plus 35 (Battenfeld GmbH, Germany). The mould-
ed pieces were made according to PN-EN ISO 294-1 standard 
[44]. 

To determine tensile strength (σm), stress at break (σb), strain 

at strength (εm) and elongation at break (εb) according to the PN-
EN ISO 527-1:2020 standard [45], a tensile testing machine type 
TIRAtest 27025 (TIRA Maschinenbau GmbH, Germany) was 
used. The mechanical properties were measured at a speed of 
50.0 mm/min. Tensile modulus (Et) was determined with the use 
of the same machine at a speed of 1.0 mm/min. 

Charpy impact strength (αcN) was determined in notched 
samples type 1eU according to the PN-EN ISO 179-1:2010 
standard [46] with edgewise impact, using a pendulum impact 
tester, type IMPats15 (ATS FAAR, Italy), equipped with a 0.5-N 
pendulum. 

All mechanical tests were carried out at 50% relative humidity 
and 23 °C. The specimens were conditioned in the same condi-
tions as the measurement for 24 h. 

4. RESULTS 

4.1. Extrusion process analysis 

Table 3 shows the values of stock temperature (Tt), torque 

main drive (Mo), power main drive (W) and efficiency (Y) record-

ed during extrusion. 
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Tab. 3. Parameters recorded during extrusion 
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Tt (°C) 220 220 217 220 218 218 

Mo (Nm) 15.5 16.5 21.5 22.0 25.7 26.4 

W (kW) 0.46 0.47 0.65 0.66 0.74 0.76 

Y (kg/h) 3.7 3.7 3.7 3.7 3.7 3.7 

 
The K1 system generated low torque in the range of 15.5–

16.5 Nm. The increase in mixing intensity resulted in an increase 

in torque by almost 21.5 Nm (K3) and by as much as 25.7 Nm in 

the case of K5. Changes in the value of the main drive power 

supply, which were related to the increased mixing capacity of the 

plasticizing system, were also observed. The value of this param-

eter for K1 is lower than for K5 by 62%. No differences between 

the set and actual extrusion temperature were observed. The 

addition of 1% graphite did not cause any significant differences in 

the extrusion process. The only observed differences were a slight 

increase in the torque and power main drive in samples with 

graphite filler compared to the neat polymer samples extruded in 

this same plasticizing system. Addition of graphite and changes in 

plasticizing system have not resulted in changes in the efficiency 

of the process. 

4.2. Phase morphology analysis  

Figure 2 shows SEM images of graphite fillers and PLA graph-
ite composites, and the size of the graphite flakes was found to be 
6 ± 2 µm. In the breakthrough of the sample obtained with the K1 
plasticizing system, the presence of larger fragments of graphite 
filler is visible. This means that the graphite introduced into the 
polymer matrix was not completely ground during extrusion. The 
graphite filler in the PLA/G/K3 and PLA/G/K5 samples was rubbed 
into smaller pieces, and this proves that better mixing and grinding 
properties of screws were utilised in the K3 and K5 systems com-
pared with K1. For the samples obtained with the use of K3 and 
K5 plasticizing systems, orientation of the graphite flakes in the 
direction of extrusion can be seen. 

No pores or any other types of discontinuity were found in the 
polymer matrix.  

4.2. FTIR-ATR and Raman analyses  

Figure 3 shows FTIR-ATR spectra of the composites. The 
lowest spectrum was obtained for the raw PLA (PLA/TC sample). 
Recorded absorption spectra contain the bands assigned to the 
PLA polymer matrix [47, 48]. The crystalline and amorphous 
polymer phases can be assigned to bands at 753 cm–1 and 865 
cm–1. At 1041 cm–1 appear the stretching modes of C–CH3 group. 
The symmetric and asymmetric stretching modes of the C–O–C 
group appear at 1081 cm–1 (symm), 1180 cm–1 and 1266 cm–1, 
respectively, while 1127 cm–1 is a position of rocking modes of the 
CH3 group band. Features characteristic to the CH and CH3 sym-

metric bending modes appear at 1358 cm–1 and 1381 cm–1, while 
the band corresponding to the asymmetric bending modes is 
found at 1452 cm−1. Ester C=O stretching modes appear at 1746 
cm–1. Weak bands (not shown in Figure 4) at 2945 cm–1 and 
2994 cm–1 are attributed to the asymmetric modes of the CH3 
group. 

 
Fig. 2. SEM picture of: (A) graphite filler, samples; (B) PLA/G/K1;  

 (C) PLA/G/K3; (D) PLA/G/K5 
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Fig. 3. FTIR-ATR spectra of samples 

The plasticizing system used during extrusion did not change 
the intensity of the bands assigned to the carbonyl (1746 cm–1) 
and ester (1081 cm–1 and 1180 cm–1) groups. The changes in 
intensity (reduction) of these peaks indicates the shortening of the 
polymer chains and thus their degradation [49]. Based on this 
observation, it can be concluded that the used plasticizing sys-
tems did not cause polylactide degradation, or caused only a 
negligibly low amount of degradation. 

Graphite filler does not affect the position and relative intensi-
ties of the characteristic PLA bands. 

 
Fig. 4. Raman spectra of neat PLA and PLA/graphite composites 

 

As shown in Figure 4, various oscillation modes visible in 
FTIR-ATR are also Raman-active. These include the following 

bands: the stretching modes of the C-CH3 group at 1042 cm–1, 
symmetric stretching modes of C-O-C group at 1092 cm–1, the 
rocking modes of the CH3 group at 1127 cm–1 and the asymmetric 
bending modes of the CH3 group at 1452 cm–1. The ester C=O 
group stretch shows a complex band at around 1770 cm–1. As Qin 
and Kean [50] have demonstrated, in amorphous PLA, the single 
C=O stretching mode appears at 1770 cm–1, whereas in crystal-
line polymer triplet band it is present at 1776 cm–1, 1766 cm–1 and 
1750 cm–1. Results of the C=O band deconvolution show signifi-
cant decrease of the 1750 cm–1 component intensity in samples 
subjected to plasticizing process, which indicates reduction of the 
crystallinity. However, no differences are observed between the 
proceeded samples of neat polymer and composite. Additionally, 
the choice of the screw system does not affect the C=O band 
structure. 

Compared to the FTIR-ATR bands, the bands assigned to 
symmetric stretching of the CH3 group at 2881 cm–1 and 2945 cm–

1, and asymmetric stretching of the methyl group at 2998 cm–1, are 
very strong.  

Raman feature at 873 cm-–1, attributed to the stretching modes 
of the C–COO group of PLA, is seen. 

Graphitic G-band appears at 1578 cm–1 in samples PLA/G/K1, 
PLA/G/K3 and PLA/G/K5 containing graphite filler. 

4.3. Thermal behaviour and stability analysis 

To determine the influence of the extruder screws’ configura-
tion on the thermal properties of the obtained composites, the 
DSC technique was used. Thermal data, such as the glass transi-

tion temperature (Tg), crystallisation temperature (Tc), cold crys-
tallisation temperature (Tcc), melting temperature (Tm), crystallisa-

tion enthalpy (ΔHc), cold crystallisation enthalpy (ΔHcc) and melt-

ing enthalpy (ΔHm), are summarised in Table 4. Thermograms for 
the first and second heating scans are presented in Figures 5 and 
6, respectively. 

The heating scan of the pristine PLA (sample PLA/TC) 
showed an endothermic peak corresponding to the melting of the 

polymer (Tm
1

 = 148.8 °C). This peak was not observed in the 
second heating scan. This behaviour confirms that the slow crys-
tallisation rate of high molecular weight PLA is not conducive to 
the development of the crystalline phase during cooling [51]. The 
rate used during the cooling of the polymer melt (10 °C/min) does 
not allow for recrystallisation. This speed is too fast for the pol-
ylactide chains to reorganise into crystal regions. Since the mobili-
ty of the chains is not limited by the presence of crystallites, the 
glass transition (compared to heating 1) is more pronounced [52]. 
The absence/large reduction of this peak has also been reported 
by other researchers [53–55]. 

For all samples, the glass transition between 57 °C and 64 °C 
(heating 1) marks the point at which the polymer chains are al-
lowed to move. Reorganisation of amorphous domains into crys-
talline ones manifest as an exothermic peak at 111 °C in the case 
of neat polymer and 116–117 °C for PLA/graphite composite. The 
increase in temperature is related to the restriction of the mobility 
of the polymer chains by graphite micro-platelets, which hinders 
the formation of a semi-crystalline phase in the polymer [56]. 
Melting peak appears near 151–153 °C. There is no correlation 
between graphite content and melting enthalpy in heating 1 scan 
results. All samples have amorphous character. 
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Tab. 4. Thermal parameters obtained by DSC 
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Heating 1 

Tm
1  

(°C) 
148.8 151.4 153.5 151.4 151.8 151.7 153.2 

ΔHm
1  

(J/g) 
28.7 28.2 24.3 25.8 26.8 26.6 27.1 

Tg
1  

(°C) 
64.3 58.0 60.2 61.5 61.5 58.8 57.6 

Tcc1  

(°C) 
- 111.5 117.3 111.7 115.9 112.0 117.3 

ΔHcc
1  

(J/g) 
- 27.7 24.1 26.6 26.1 26.6 27.0 

Xc
1 

(%) 
31 0 0 0 0 0 0 

Heating 2 

Tm
2  

(°C) 
- 151.3 151.2 151.5 150.1 151.1 150.0 

ΔHm
2  

(J/g) 
- 3.1 15.4 2.1 22.7 10.6 24.0 

Tg
2  

(°C) 
57.1 58.7 60.0 59.1 59.0 59.1 59.8 

Tcc
2  

(°C) 
- 131.3 128.1 129.8 125.4 129.3 125.3 

ΔHcc
2  

(J/g) 
- 3.0 15.1 1.8 22.5 10.3 23.8 

Xc
2 

(%) 
0 0 0 0 0 0 0 

 
Fig. 5. Heating 1 DSC thermograms of samples 

No changes were recorded on the thermograms of the sam-
ples during cooling. 

 
Fig. 6. Heating 2 DSC thermograms of samples 

Glass transition temperature in the second heating scan is al-
most in this same level, near 60 °C, for all samples. The same 
observation can be made in the case of the melting temperature, 
where, too, the differences between the samples are small. How-
ever, there is a difference in the melting enthalpy between 
PLA/graphite composites and neat polymers. Samples with graph-
ite filler need much more energy to melt. The same relationship 
occurs with regard to the enthalpy and temperature of cold crystal-

lisation. For samples with graphite, ΔHcc
2 is higher and Tcc

2 low-
er. Graphite fillers affect the position of the exothermic peak, 
which is slightly shifted to lower temperatures. As revealed by 
molecular simulations, local mobility of the polymer chains near 
the graphite phase are highly anisotropic and drastically reduced 
in the direction perpendicular to the graphite basal planes. Thus, 
graphite filler can act as a nucleating agent that promotes the 

crystallisation process. As a consequence, the Tcc
2 decreases 

[57]. Crystallinity determined from the second heating data for all 
samples is on a 0% level. 

4.4. Rheological properties  

Table 5 summarises the MFR values of the obtained samples. 
An increase in MFR value may be a sign of degradation of the 
polymer [58]. In the samples without graphite, no significant in-
crease in the value of this parameter was observed. This observa-
tion, combined with the conclusions from the FTIR-ATR analysis, 
allows us to suppose that the used plasticizing system had a 
negligible effect on the degradation of the used PLA. For samples 
containing graphite, a slight increase in the melt flow rate can be 
noticed compared to the samples without this additive, obtained 
with the same plasticizing system. This may be due to an increase 
in flow resistance associated with the use of solid filler [59].  
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Tab. 5. MFR values with standard deviations 

Sample MFR 

[g/10 min] 

PLA/NG/K1 5.8 ± 0.2 

PLA/G/K1 5.8 ± 0.1 

PLA/NG/K3 6.3 ± 0.1 

PLA/G/K3 6.0 ± 0.1 

PLA/NG/K5 6.4 ± 0.1 

PLA/G/K5 6.0 ± 0.1 

4.5. Mechanical properties 

The results of mechanical tests of the samples are summa-
rised in Table 6. 

Tab.6. Mechanical properties 
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Static tension 

σm 

(MPa) 

71.8 
± 0.6 

65.3 
± 2.7 

64.0 
± 2.9 

67.3 
± 2.3 

63.3 
± 1.9 

67.6 
± 0.7 

63.5 
± 1.1 

σb 

(MPa) 

70.9 
± 1.6 

65.2 
± 2.5 

63.7 
± 2.7 

67.0 
± 2.3 

63.0 
± 1.8 

67.4 
± 0.7 

63.0 
± 1.0 

εm 

(%) 

4.7 

± 0.2 

4.3 

± 0.2 

4.1 

± 0.2 

4.4 

± 0.4 

4.2 

± 0.2 

4.7 

± 0.1 

4.3 

± 0.1 

εb 

(%) 

5.1  

± 0.4 

4.4 

 ± 
0.2 

4.2 

 ± 
0.2 

4.4 

 ± 
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4.3 

 ± 
0.2 

4.7 

 ± 
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4.4 

 ± 
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Et 
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3135 

±  

82 

2024 

± 
124 

2168 

±  

79 

2193 

 ± 
125 

2101 

 ±  

81 

1943 

 ±  

82 

2024 

 ± 
156 

Charpy impact strength 

αcN 

(kJ/m2) 

2.9 

 ± 
0.3 

3.2 

 ± 
0.4 

3.5 

 ± 
0.3 

2.8 

 ± 
0.2 

2.9 

 ± 
0.1 

2.4 

 ± 
0.1 

3.3 

 ± 
0.2 

 
During extrusion, the polylactide is partially degraded [58]. 

This can be observed by comparing the mechanical properties 
registered during static tension between the pristine polylactide 
and the samples obtained by a twin-screw extruder without graph-
ite. For these samples, correlations are not observed between the 
plasticizing system used and changes in mechanical properties. 
This means that the high temperature associated with the compo-
site extrusion process is mainly responsible for the degradation of 
the polymer. It should also be taken into account that the samples 
made of the granulate obtained with the twin-screw extruder were 
subjected to one thermal treatment more than PLA. An additional 
process could increase the degradation of the polymer, which is 
manifested by a greater difference in the values recorded during 
the static tensile tests. 

The addition of graphite caused a slight reduction in value of 

tensile strength (σm) and stress at break (σb) for all samples. The 
same effect was observed by other researchers [60–62]. 

 The results of the Charpy impact test do not show any signifi-
cant difference between samples. It seems that the configuration 

of the plasticizing system does not affect the value of this parame-
ter. The addition of graphite microplates slightly increased the 
value of Charpy impact strength. Polymer degradation can be 
responsible, among other things, for the decrease in the αcN value 
[63]. Since the difference between the PLA/TC sample and the 
others is small, it can be concluded that the polymer degradation 
during extrusion is insignificant. 

5. CONCLUSIONS 

The configuration of the plasticizing system of the twin-screw 
extruder affects the properties of the obtained polymer compo-
sites. For efficient mixing of the composite, it is necessary to use a 
screw with intensive mixing system. The mild configuration makes 
it impossible to obtain composites with an effective dispersion of 
graphite in the polymer matrix. The systems equipped with seg-
ments responsible for improving mixing, grinding and reversing 
the material ensure proper grinding of the graphite flakes and 
prevent the formation of agglomerates. 

However, the increase in mixing intensity generates a greater 

load on the machine (Mo and W); therefore, the mixing and grind-
ing elements in the screw system should be optimally selected to 
obtain the correct graphite dispersion with the lowest possible 
load on the machine during processing. 

The increase in the intensity of mixing and shear in the screw 
configuration causes slight degradation in the PLA chain (chain 
breakage), which is indicated by a decrease in strength properties 
and an increase in the flow rate. On the other hand, the change of 
the screw configuration did not affect the oxidative degradation of 
PLA, which is confirmed by the results of the infrared and Raman 
analyses. 

The addition of graphite has a slight influence on the mechan-
ical properties and the melt flow rate of the obtained composites. 
For mechanical tests, a slight decrease in the measured values 
was noticed that is within the standard deviation of the measure-
ment. Graphite filler improves the Charpy impact strength of com-
posites. The MFR value slightly decreased after adding graphite 
to the polymer matrix. 

The addition of graphite and the configuration of the type of 
extruder plasticizing system used had no effect on the thermal 
properties of the composites. There were no differences in the 
melting point and the degree of crystallinity of the tested samples. 
All samples showed an amorphous nature. The only observation 
worth noticing is the increase in enthalpy and the decrease in the 
cold crystallisation temperature of samples containing graphite 
microplates. This effect is related to the nucleophilic properties of 
the graphite filler. 

The proposed configurations of the plasticizing system did not 
have a significant impact on the degradation of PLA and thus on 
the deterioration of the obtained composites’ properties. At the 
same time, the K3 and K5 configurations made it possible to 
obtain samples with an excellent dispersion of the filler in the 
polymer matrix. 
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