PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Null controllability from the exterior of a one-dimensional nonlocal heat equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the null controllability problem from the exterior for the one dimensional heat equation on the interval (−1, 1), associated with the fractional Laplace operator (−∂2x)s, where 0 < s < 1. We show that there is a control function, which is localized in a nonempty open set O ⊂ (R \ (−1, 1)), that is, at the exterior of the interval (−1, 1), such that the system is null controllable at any time T > 0 if and only if 1/2 < s < 1.
Rocznik
Strony
417--438
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • George Mason University, Department of Mathematical Sciences, Fairfax, VA 22030 (USA)
  • Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencia, Casilla 307-Correo 2, Santiago, Chile
Bibliografia
  • Antil, H. and Bartels, S. (2017) Spectral approximation of fractional PDEs in image processing and phase field modeling. Comput. Methods Appl. Math. 17, 661–678.
  • Antil, H., Khatri, R. and Warma, M. (2019) External optimal control of nonlocal PDEs. Inverse Problems 35, 084003, 35 pp.
  • Antil, H., Nochetto, R. H. and Venegas, P. (2018a) Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting. Optim. Eng 19, 559–89.
  • Antil, H., Nochetto, R. H. and Venegas, P. (2018b) Optimizing the Kelvin force in a moving target subdomain. Math. Models Methods Appl. Sci. 28, 95–130
  • Biccari, U. (2014) Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator. arXiv:1411.7800.
  • Biccari, U. and Hernández-Santamaria, V. (2019) Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects. IMA J. Math. Control Inf. 36(4), 1199–1235.
  • Biccari, U., Warma, M. and Zuazua, E. (2017) Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17, 387–409.
  • Bogdan, K., Burdzy, K. and Chen, Z.-Q. (2003) Censored stable processes. Probab. Theory Related Fields 127, 89–152.
  • Bucur, C. and Valdinoci, E. (2016) Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana 20. Springer, Cham; Unione Matematica Italiana, Bologna.
  • Caffarelli, L. A., Roquejoffre, J-M. and Sire, Y. (2010) Variational problems for free boundaries for the fractional Laplacian. Eur. Math. Soc. (JEMS) 12, 1151–1179.
  • Caffarelli, L. A. and Silvestre, L. (2007) An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260.
  • Claus, B. and Warma, M. (2020) Realization of the fractional Laplacian with nonlocal exterior conditions via forms method. J. Evol. Equ., to appear.
  • Di Nezza, E., Palatucci, G. and Valdinoci, E. (2012) Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573.
  • Dipierro, S., Ros-Oton, X. and Valdinoci, E. (2017) Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33, 377–416.
  • Du, Q., Gunzburger, M. and Lehoucq, R. B. and Zhou, K. (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23, 493–540.
  • Fattorini, H. O. (1975) Boundary control of temperature distributions in a parallelepipedon. SIAM J. Control 13, 1–13.
  • Fattorini, H. O. and Russell, D. L. (1971) Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43, 272–292.
  • Gal, C. G. and Warma, M. (2017) Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces. Comm. Partial Differential Equations 42, 579–625.
  • Ghosh, T., Rüland, A., Salo, M. and Uhlmann, G. (2018) Uniqueness and reconstruction for the fractional Calderón problem with a single measurement. ArXiv preprint arXiv:1801.04449.
  • Ghosh, T., Salo , M. and Uhlmann G. (2016) The Calderón problem for the fractional Schrödinger equation. arXiv:1609.09248.
  • Grubb, G. (2015) Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math. 268, 478–528.
  • Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghton, J. D. R., Hays, G.C., Jones, C.S., Noble, L.R., Wearmouth, V.J., Southall, E.J. and Sims, D.W. (2010) Environmental context explains L´evy and Brownian movement patterns of marine predators. Nature 465, 1066-1069.
  • Kwaśnicki, M. (2011) Spectral analysis of subordinate Brownian motions on the half-line. Studia Math. 206, 211–271.
  • Kwaśnicki, M. (2012) Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262, 2379–2402.
  • Larkin, P. A. and Whalen, M. (1999) Direct, near field acoustic testing. SAE Technical Paper.
  • Lasiecka, I. and Triggiani, R. (2000) Control theory for partial differential equations: continuous and approximation theories. I. Abstract parabolic systems. Encyclopedia of Mathematics and its Applications 74. Cambridge University Press, Cambridge.
  • Lions, J.-L.(1988) Contrôlabilité exacte, perturbations et stabilisation de systémes distribués. Tome 2. (French) [Exact controllability, perturbations and stabilization of distributed systems. Vol. 2] Perturbations. [Perturbations] Recherches en Mathématiques Appliquées [Research in Applied Mathematics] 9. Masson, Paris.
  • Louis-Rose, C. and Warma, M. (2020) Approximate controllability from the exterior of space-time factional wave equations. Appl. Math. Optim. to appear. DOI: https://doi.org/10.1007/s00245-018-9530-9
  • Lübbe, A. S., Bergemann, C., Riess, H., Schriever, F., Reichardt, P., Possinger, K., Matthias, M., Dörken, B., Herrmann, F., Gürtler, R., Hohenberger, P., Haas, N., Sohr, R., Sander, B., Lemke, A.-J., Ohlendorf, D., Huhnt, W. and Huhn, D. (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Research 56(20), 4686–4693.
  • MacCamy, R. C., Mizel, V. J. and Seidman T. I. (1968) Approximate boundary controllability for the heat equation. J. Math. Anal. Appl. 23, 699–703.
  • MacCamy, R. C., Mizel, V. J. and Seidman, T. I. (1969) Approximate boundary controllability of the heat equation. II. J. Math. Anal. Appl. 28, 482–492.
  • Niedermeyer, E. and da Silva, F. H. L. (2005) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins.
  • Ros-Oton, X. and Serra, J. (2014) The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9)101, 275–302.
  • Ros-Oton, X. and Serra, J. (2014) The extremal solution for the fractional Laplacian. Calc. Var. Partial Differential Equations 50, 723–750.
  • Servadei, R. and Valdinoci, E. (2014) On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A 144, 831–855.
  • Unsworth, M. (2005) New developments in conventional hydrocarbon exploration with electromagnetic methods. CSEG Recorder 30(4), 34–38.
  • Valdinoci, E. (2009) From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49, 33–44.
  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A. and Stanley, H. E. (1996) L´evy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415.
  • Warma, M. (2005) The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42, 499–547.
  • Warma, M. (2019) Approximate controllability from the exterior of spacetime fractional diffusive equations. SIAM J. Control Optim. 57, 2037–2063.
  • Warma, M. and Zamorano, S. (2020) Analysis of the controllability from the exterior of strong damping nonlocal wave equations. ESAIM Control. Optim. Calc. Var. to appear. DOI: https://doi.org/10.1051/cocv/2019028
  • Weiss, C. J., Waanders, B. G. and Antil, H. (2020) Fractional Operators Applied to Geophysical Electromagnetics. Geophysical Journal International 220(2), 1242–1259.
  • Williams, R. L., Karacan, I. and Hursch, C. J. (1974) Electroencephalography (EEG) of Human Sleep: Clinical Applications. John Wiley & Sons.
  • Zuazua, E. (2006) Controllability of Partial Differential Equations. 3`eme cycle. Castro Urdiales, Espagne.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca1fe24f-6189-409c-95db-26c1290b2f21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.