Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The corrosion resistance Cr3C2-25%NiCr and Ni-20%Cr coatings were deposited on the alloy A-286 by high-velocity oxy-fuel (HVOF) coating, and the high-temperature corrosion features were evaluated at 700 and 850°C in Na2SO4-5%NaCl-7.5%NaVO3 atmosphere. Deposited coatings are dense and well-adherent to the substrate. A scanning electron microscope (SEM) is used to analyze the structure of the corroded samples. Results showed that Cr3C2-25%NiCr coating provides better resistance to corrosion at 700°C, which is attributed to the protective Cr2O3 development. The coated metal was exposed at 850°C, and a higher corrosion rate was observed compared to 700°C, indicating that the temperature influenced the oxidation rate. The coating failure (crack) was noticed on the Cr3C2-25%NiCr coated surface when exposed at 850°C, and no damages are in the Ni-20%Cr coating.
Wydawca
Czasopismo
Rocznik
Tom
Strony
613--623
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wzory
Twórcy
autor
- Chennai Institute of Technology, Centre for Additive Manufacturing, Chennai-600 069, India
autor
- Vellore Institute of Technology, Centre for Innovative Manufacturing Research, Vellore-632 014, India
autor
- Adi Shankara Institute of Engineering and Technology Kalady, Department of Mechanical Engineering, India
autor
- Vellore Institute of Technology, School of Mechanical Engineering, Vellore-632014, India
autor
- Chennai Institute of Technology, Centre for Additive Manufacturing, Chennai-600 069, India
autor
- Ramco Institute of Technology, Department of Mechanical Engineering, Rajapalayam, India
Bibliografia
- [1] A.R. Salehi, S. Serajzadeh, N. Yazdipour, A study on flow behawior of A-286 superalloy during hot deformation. Mater. Chem. Phys. 101 (1), 153-157 (2007). DOI: https://doi.org/10.1016/j.matchemphys.2006.03.012
- [2] G. Shejale, R. Garg, G.V. Subrahmanyam, A. Schnell, Condition Assessment Study of A-286 Alloy Gas Turbine Wheel. J. Fail. Anal. Prev. 16 (5), 712-717 (2016). DOI: https://doi.org/10.1007/s11668-016-0154-6
- [3] Y. Garip, Z. Garip, O. Ozdemir, Prediction modeling of type-I hot corrosion performance of Ti-Al-Mo-X (X=Cr, Mn) alloys in (Na, K)2SO4 molten salt mixture environment at 900°C. J. Alloy Compd. 843, 156010 (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.156010
- [4] S.M. Muthu, D.A. Moganraj, Air Oxidation and Hot Corrosion Behavior of Bare and CO2 laser-Welded Superalloy A-286 at 700°C. Trans. Indian Inst. Met. 72 (2019). DOI: https://doi.org/10.1007/s12666-019-01713-0
- [5] Y. Garip, O. Ozdemir, Corrosion behavior of the resistance sintered TiAl based intermetallics induced by two different molten salt mixture. Corros. Sci. 174, 108819 (2020). DOI: https://doi.org/10.1016/j.corsci.2020.108819
- [6] Y. Garip, An investigation on the corrosion performance of Fe2CoCrNi0.5 based high entropy alloys. Corros. Sci. 206, 110497 (2022). DOI: https://doi.org/10.1016/j.corsci.2022.110497
- [7] T.S. Sidhu, S. Prakash, R.D. Agrawal, Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment. J. Therm. Spray Technol. 15 (4), 811-816 (2006). DOI: https://doi.org/10.1361/105996306X147162
- [8] S.M. Muthu, A.M., Investigations of hot corrosion resistance of HVOF coated Fe based superalloy A-286 in simulated gas turbine environment. Eng. Fail. Anal. 107, 104224 (2020). DOI: https://doi.org/10.1016/j.engfailanal.2019.104224
- [9] W. Zhou, K. Zhou, C. Deng, K. Zeng, Y. Li, Hot corrosion behaviour of HVOF-sprayed Cr3C2-NiCrMoNbAl coating. Surf. Coat. Technol. 309, 849-859 (2017). DOI: https://doi.org/10.1016/j.surfcoat.2016.10.076
- [10] T.S. Sidhu, S. Prakash, R.D. Agrawal, Characterization of NiCr wire coatings on Ni- and Fe-based superalloys by the HVOF process, Surf. Coat. Technol. 200, 5542-5549 (2006). DOI: https://doi.org/10.1016/j.surfcoat.2005.07.101
- [11] S. Tailor, A. Modi, S.C. Modi, High-Performance Molybdenum Coating by Wire-HVOF Thermal Spray Process, J. Therm. Spray Technol. 27, 757-768 (2018). DOI: https://doi.org/10.1007/s11666-018-0706-2.
- [12] C. Senderowski, N. Cinca, S. Dosta, I.G. Cano, J.M. Guilemany, The Effect of Hot Treatment on Composition and Microstructure of HVOF Iron Aluminide Coatings in Na2SO4 Molten Salts. J. Therm Spray Tech. 28, 1492-1510 (2019). DOI: https://doi.org/10.1007/s11666-019-00886-w
- [13] C. Senderowski, Z. Bojar, Gas detonation spray forming of Fe-Al coatings in the presence of interlayer. Surf. Coat. Technol. 202 (15), 3538-3548 (2008). DOI: https://doi.org/10.1016/j.surfcoat.2007.12.029
- [14] E. Sadeghi, S. Joshi, Chlorine-induced high-temperature corrosion and erosion-corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings. Surf. Coat. Technol. 371, 20-35 (2019). DOI: https://doi.org/10.1016/j.surfcoat.2019.01.080
- [15] S.M. Muthu, M. Arivarasu, N. Arivazhagan, M.N. Rao, Investigation of hot corrosion resistance of bare and Ni-20%Cr coated superalloy 825 to Na2SO4-60%V2O5 environment at 900°C. Procedia Struct. Integr. 14, 290-303 (2019). DOI: https://doi.org/10.1016/j.prostr.2019.05.037
- [16] D. Pradhan, G.S. Mahobia, K. Chattopadhyay, V. Singh, Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment. J. Alloys Compd. 740, 250-263 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.01.042
- [17] N. Bala, H. Singh, S. Prakash, High-temperature oxidation studies of cold-sprayed Ni-20Cr and Ni-50Cr coatings on SAE 213-T22 boiler steel. Appl. Surf. Sci. 255 (15), 6862-6869 (2009). DOI: https://doi.org/10.1016/j.apsusc.2009.03.006
- [18] C. Hempel, M. Mandel, C. Schimpf, L. Krüger, Long-term low-temperature hot corrosion of PTA welded René 41 superalloy under marine-like conditions. Mater. Corros. (April), (2022). DOI: https://doi.org/10.1002/maco.202213053
- [19] S. Mohan Kumar, A. Rajesh Kannan, R. Pramod, N. Siva Shanmugam, S.M. Muthu, V. Dhinakaran, Microstructure and high temperature performance of 321 SS wall manufactured through wire + arc additive manufacturing. Mater. Lett. 314, 131913 (2022). DOI: https://doi.org/10.1016/j.matlet.2022.131913
- [20] D. Migas, M. Kierat, G. Moskal, The oxide scales formed on different Co-Ni based superalloys during isothermal oxidation at 800 and 900°C. Arch. Metall. and Mater. 66, 5-14 (2021). DOI: https://doi.org/10.24425/amm.2021.134752
- [21] V. Mannava, A.S. Rao, N. Paulose, M. Kamaraj, R.S. Kottada, Hot corrosion studies on Ni-base superalloy at 650°C under marine like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3). Corros. Sci. 105, 109-119 (2016). DOI: https://doi.org/10.1016/j.corsci.2019.07.010
- [22] G.S. Mahobia, N. Paulose, V. Singh, Hot Corrosion Behavior of Superalloy IN718 at 550 and 650°C. J. Mater. Eng. Perform. 22 (8), 2418-2435 (2013). DOI: https://doi.org/10.1007/s11665-013-0532-0
- [23] W. Xie, X. Xing, Z. Cao, Thermodynamic, lattice dynamical, and elastic properties of iron‐vanadium oxides from experiments and first principles. J. Am. Ceram. Soc. 103, (2020). DOI: https://doi.org/10.1111/jace.17064
- [24] R.A. Rapp, Hot corrosion of materials: a fluxing mechanism? Corros. Sci. 44 (2), 209-221 (2002). DOI: https://doi.org/10.1016/S0010-938X(01)00057-9
- [25] M. Yu, T. Cui, D. Zhou, R. Li, J. Pu, C. Li, Improved oxidation and hot corrosion resistance of the NiSiAlY alloy at 750°C. Mater. Today Commun. 29, 102939 (2021). DOI: https://doi.org/10.1016/j.mtcomm.2021.102939
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca1d5079-3ea3-4bcf-9b20-5df43cefdc25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.