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Abstract 

In this paper we describe the development of a novel markerless motion capture 

system and explore its use in documenting elder exercise routines in a health 

club. This system uses image contour tracking and swarm intelligence methods 

to track the location of the spine and shoulders during three exercises — 

treadmill, exercise bike, and overhead lateral pull-down. Validation results 

show that our method has a mean error of approximately 2 degrees when 

measuring the angle of the spine or shoulders relative to the horizontal. 

Qualitative study results demonstrate that our system is capable of providing 

important feedback about the posture and stability of elders while they are 

performing exercises. Study participants indicated that feedback from our 

system would add value to their exercise routines. 
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1 Introduction 

Everyone can benefit from some type of exercise including, and perhaps 

most importantly, older adults. However, it has been shown that less than 25% 

of older adults aged 65 and older include a regular exercise routine in their 

daily activity [23]. Sedentary elders who begin an exercise program ultimately 

benefit from improved quality of life and reduced health care expenditures 

[7]. Additional benefits of a daily exercise routine for elders include preven-

tion of falls, alleviation of depression, improved cognitive function, improved 

bone density, improved cardiovascular function — the list of benefits is vir-

tually endless [6, 7, 12, 15, 19, 20, 23]. In [12], the authors discovered that 

exercise is an under prescribed therapeutic intervention due to misconceptions 

by elders, their caregivers, and their health care providers about exercise safe-

ty. For the reasons stated above, we aim to improve the exercise safety for 

older adults, which could have a significant impact on the overall health, and 

subsequent independence, of elders. 

We conducted a pilot study that examined the human factors issues of 

a custom technology interface designed to capture range of motion and pro-

vide feedback to elderly people using exercise equipment. In health care, hu-

man factors researchers attempt to understand the interrelationships between 

humans and the tools they use, the environments in which they live and work, 

and the tasks they perform [21, 22, 27]. Thus, the goal of a human factors 

approach is to optimize the interactions between technology and the human in 

order to minimize human error and maximize human-system efficiency, hu-

man well-being, and quality of life [19]. This paper describes the research and 

development of the technology used in our human factors project. This tech-

nology is a novel exercise-feedback computer interface that combines image 

segmentation, contour tracking, motion capture, and swarm intelligence. 

Section 2 introduces previous work in using contour tracking for human 

motion analysis. Section 3 gives a detailed description of our system while 

Section 4 outlines some results from our study as well as the validation of our 

methods. We summarize in Section 5. 

2 Related Work 

Human motion analysis is a well researched topic and is pertinent to many 

fields including sports medicine, nursing, physical therapy and rehabilitation, 

and surveillance. There have been special issues of journals and tracks in 

computer vision conferences completely dedicated to human motion analysis 

in video. 

References [1, 5, 16, 25] provide a good background on human motion 

analysis techniques. The approach from [3] uses silhouette-based features to 
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recognize falls in monocular video of elders in the home environment. In [29], 

the author proposes a method to analyze human pose during exercise. This 

method has the strength that it is generalizable to any pose; however, as the 

author points out, it is very error prone. Also, the assumption is made that the 

background subtraction (silhouette extraction) is near ideal. Achieving an 

ideal silhouette in a gym environment is virtually impossible as we will pro-

vide examples for in Section 4. Another assumption that is made in [29] is 

that the subject is facing the camera and is upright. We wish to measure the 

angle of the spine, as seen from the side view in both upright (treadmill) and 

sitting (overhead pull- down) poses; hence, this assumption makes this me-

thod undesirable for use in our research. 

 
(a) Side view video frame  

of treadmill 

 
(b) Rear view video frame  

of treadmill 

 
(c) Spine contour tracking 

 
(d) Shoulder contour tracking 

Figure 1. Silhouette extraction examples show spine and shoulder tracking of tread-

mill exercise with contour templates shown in gray. 

Active contours, called snakes [17], have been used to track face features 

(e.g. eyebrows and mouth) and humans in video. Although active contour 

methods are effective, they do not give us the direct capability of measuring 

the posture information we require. Hence, we use a contour tracking method 

based on the edge distance transform [24]. Consider this supporting example. 

Snakes can be severely affected by poor silhouette extraction. Because we are 

performing our research in a real environment, poor silhouette extraction is 

a reality we must consider in the design of our algorithm. Our proposed me-
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thod is less affected by the poor silhouette and the angle of the spine relative 

to the ground is easily determined. To deduce the spine angle from the active 

contour in this example would require a more complex (and, perhaps, less 

accurate) method. Additionally, one could imagine that our method is, in es-

sence, an active contour method where the contour is restricted to zero curva-

ture. 

3 Exercise-Feedback System 

Our method tracks body contours in the video of exercising humans. The 

two contours we are interested in are the edge of the back (spine) as seen from 

the side view and the shoulders as seen from the rear or front view. Fig. 1 

shows these two contours on example video frames of a research participant 

walking on a treadmill. Fig. 2 illustrates our approach in a block diagram. We 

designer our approach to be both robust and flexible. 

Figure 2. Block diagram of exercise-feedback system components — spine tracking 

on side view of treadmill exercise. 

The environment in which we are performing this research study is a pub-

lic gym; hence, our ability to control experimental conditions, such as lighting 

conditions, background environment, and subject clothing, is very limited. As 

a result, we chose simple and proven methods to perform the operations in our 

algorithm. 
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First, the silhouette of the human in each video frame was computed. We 

used a statistics-based background subtraction algorithm that is adapted from 

[28]. Second, the chamfer distance transform of each silhouette frame was 

computed, as in [18]. The chamfer distance transform provides an error sur-

face upon which we can fit a contour template. We created a novel optimiza-

tion algorithm called Roach Infestation Optimization (RIO) [11] to find the 

best position of the contour template, which, ideally, is located on the body 

contour of interest, either the back or spine. The best position of the contour 

template is defined by a temporal fitness function that accounts for exercise 

dynamics and template translation and rotation. We now describe in more 

detail each element shown in the block diagram in Fig. 2. 

3.1 Human Silhouette Extraction 

Silhouette extraction or background subtraction is a problem that is very 

pertinent to many fields of research, such as surveillance, activity recognition, 

and computer vision. However, this problem has many difficult facets includ-

ing dynamic lighting conditions and backgrounds, poor scene illumination, 

inferior cameras, and highly variable foregrounds. It is beyond the scope of 

this paper to address these matters; however, we emphasize that extracting 

―good enough‖ silhouettes is essential to our algorithm. 

The silhouette extraction algorithm we use is adapted from [28]. We, first, 

record the video of the scene without the participant — we denote these video 

frames as    . Then we record the video of the participant performing the 

exercise — denoted    . It is important to keep the camera parameters — such 

as pointing, contrast, and brightness — consistent for the recording of both 

    and    . The red-green-blue (RGB) digital images are then converted to 

a huesaturation- value (HSV) color space [8]. Then a statistical background 

representation is formed from approximately 100 frames of the background 

video     (no human is in view). This statistical background representation is 

then used to classify each pixel in    . as either background or foreground. 

The participant is the foreground; hence, the background subtraction leaves 

only the image pixels that correspond to the image of the participant. Figs. 

1(c,d) show the silhouettes computed from the corresponding video frames 

shown in Figs. 1(a,b). We denote the silhouette image of video frame f as 

        , where            indicates the ith row, jth column pixel is a fore-

ground pixel and            indicates a background pixel. 
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3.2 Contour Tracking 

We adapt the chamfer distance transform, described in [18, 24], and define 

 

                 
                

                 

                               
 

    
                

                 
(1) 

Essentially, (1) calculates the minimum squared distance between each pixel 

location and the edge of the human silhouette. We compute (1) for each pixel 

in the image and this distance transform map can be used to determine the 

best location for a contour template. Let T be a template, i.e. T is a set of 

coordinates describing a shape. The template is a discrete list of pixel coordi-

nates, which define the template shape. For example, a linear (line) template, 

such as that used to track the spine, could be defined as 

                                

where, in this example, T is a vertical line, three pixels long. This template 

formulation is very general and can represent any types of shapes, including 

lines, curves, and broken shapes. 

The template error score is 

                   

         

 (2) 

 

(a) Spine template 

 

(b) Shoulders template 

Figure 3. Templates used to track (a) spine and (b) shoulders. 
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where                are the contour template parameters, and f is the video 

frame. The parameters    and    represent the translation and    represents 

the rotation of the template. We then map (2) onto the interval       with 

a simple spline function of the form 

                                     (3) 

The reason we perform this mapping is so that in Section 3.3 we can use stan-

dard fuzzy operators to combine this objective function with a membership 

function that limits the search space. 

The best contour template location is defined as 

               
                 (4) 

We use a straight line to model the contour of the spine, see Fig. 3(a), and 

two sloping lines with attached vertical lines to model the contour of the 

shoulders, see Fig. 3(b). As Fig. 3 shows, the templates we used for this study 

are customizable for each participant. However, if one wished to use our tech-

nique to track other body contours, a template can easily be designed. Equa-

tion (2) is an error score of the fit of the contour template, for a given parame-

ter vector    , to the edge of the silhouette in frame f. The coordinates       

over which the summation in (2) is computed, are found by the linear trans-

formation 

 
  
  
 
 
  

           
          

       
  
  

  (5) 

where            
 
 

 is the coordinates of the ith pixel in the contour template 

 . In our algorithm we define the center of the template as the origin, but this 

is arbitrary. 

 

 

 

 

 

 

 



Havens T. C., Alexander G. L., Abbott C. C., Keller J. M., Skubic M., Rantz M. 

28 

 
   (a) Contour parameters 

                          

                    

         
          

 
     (b) Contour parameters 

                       

                     

         
          

Figure 4. Example values of contour scoring function (2) for spine contour tracking 

of treadmill exercise 

Fig. 4 illustrates the value of the template error scores   and        for two 

examples. Both examples use the same silhouette and contour template, only 

the parameter vector     is changed. As Fig. 4(a) shows, the best location of 

the contour template — on the spine — results in the lower error score. As-

suming that the contour template is defined properly and the silhouette image 

is ideal, the human contours can be tracked in video by solving (4) for each 

successive video frame. 

3.3 Temporal RIO-Based Contour Search 

Under ideal circumstances where an ideal silhouette image can be com-

puted, solving (4) would be sufficient for tracking the contours on the human. 

However, we conducted this research in a gym-environment; hence, ideal 

silhouettes were not always achieved. We added a temporal term to (4) that 

limited the candidate contour locations     to those that only changed slightly 

from the previous frame. In other words, because we are tracking human mo-

tion, we can assume that the spine or shoulder contours only move a small 

amount between video frames (video was taken at 7.5 frames-per-second). For 

each video frame, the error function that must be minimized is the fuzzy union 

of        and R 

           
                   

                  (6) 

where     
 

 is the previous frame’s best rotation parameter solution 

         
  , is the membership in rotated more than expected for one video 

frame. The temporal damping function is designed such that large changes in 
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the template parameters produce high membership. We use the following 

formulation for the membership   

         
   

 
  
 

  
 

                     

  
   

   
 
 

 

                    

    
   

 

      
 

   
 
 

 

                     

   

 

   

    

  

 

(7) 

where           
   and, a and b set the inflection points of the spline. In 

essence, a sets the maximum expected change in rotation between frames, 

while b sets the point at which candidate solutions are severely punished. 

Values that we found effective for our study are a=5 degrees and b=10 de-

grees. Hence, it is clear, by comparing Eqs. (3) and (7), that R will dominate 

the value of E in (6) for changes in rotation angle greater than a. E reduces to 

       for     

RIO [11] is a swarm intelligence method that attempts to find the global 

optima of objective functions, such as (6). In [11] we showed that RIO is 

more effective than Particle Swarm Optimization (PSO) [4, 14] at finding the 

global optima of several test functions. The RIO algorithm is based on the 

social behavior of cockroaches described in [9, 13, 26]. The cockroaches be-

haviors that we assimilated into the RIO algorithm are: 

 Cockroaches search for the darkest location in the search space. The 

level of darkness at a location      is directly proportional to the val-

ue of the fitness function at that location       (in this paper       is E 

in (6, which also includes the temporal portion of the fitness); 

 Cockroaches enjoy the company of friends and socialize with nearby 

cockroaches; 

 Cockroaches periodically become hungry and leave the comfort of 

darkness or friendship to search for food. 

Algorithm 1 shows the specific steps of RIO as described by the above beha-

viors. In the context of our systems for tracking contours on the human body, 

RIO works in the following way: 

1. The roaches are initialized randomly within a pre-defined bounding box 

around the contour of interest—the spine or the shoulders—and within 

a predefined parameter space; 

2. The RIO algorithm searches for the best set of parameters     that mi-

nimize E; 

3. Advance the video frame and return to step 1. 
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3.4 Interface 

The interface we developed provides feedback to the study participants. 

The layout of our interface is shown in Fig. 6. The upper left shows the sil-

houette extraction result, the upper right shows the tracking contour on the 

silhouette. The lower left view is a zoomed-in view of the tracking area. This 

view provides the participant with a more detailed view on how their spine or 

shoulders look as compared to the contour tracking reference. Finally, the 

angle of the spine or shoulders is graphed on the lower right. The solid black 

line shows the angle at each video frame, while the dotted line is a running 

average of the angle. Thus, information on both the movement (solid line) and 

overall posture (dotted line) is shown on the graph. Section 4.2 discusses the 

participants’ views on the exercise feedback interface. 

 

Figure 5. Plot of          
   for inflection points a=5 and b=10. 
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Figure 6. Layout of contour tracking interface — upper left shows silhouettes, upper 

right shows tracking result on silhouettes, lower right shows exploded view of track-

ing area, and lower right is a plot of the angle versus video frame. 
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(a) Marker locations for spine tracking 

 

(b) Marker locations for shoulder tracking 

Figure 7. Vicon reflective marker locations shown as circles. 

4 Results 

4.1 Motion Capture Validation 

We validated our contour tracking method with a Vicon motion capture 

system (http://www.vicon.com). The Vicon system is a three-dimensional 

tracking system that tracks the location of reflective markers that are placed 
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on the body and is one of the most accurate methods of tracking 3D position 

of the human body. In contrast to our system, which consists of an $800 PC 

and two $100 webcams, the Vicon system we used in this study cost 

>$160,000 and uses seven high-resolution cameras. 

 

(a) Spine tracking validation 

 

(b) Shoulder tracking validation 

Figure 8. Validation results of contour tracking methods. 
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Figures 7(a,b) shows the placement of the markers on the body that we 

used in the validation experiment. Figure 7(a) shows the three markers on the 

spine — one marker was placed at the base of the C7 cervical vertebrae (the 

base of the neck), one marker was placed between the T5-T7 thoracic verte-

bra, and one marker was placed between the L5 lumbar and S1 sacral verte-

bra (around the belt line). These marker locations were used to validate our 

spine tracking method. For the shoulder tracking validation experiment, one 

marker was placed on the tip of each of the acromion (the top of the shoulder) 

and one marker was placed on the C7 cervical vertebrae, as shown in Fig. 

7(b). 

We validated our spine tracking method by having the subject perform 

a series of bends forward from the waist. Each experiment consisted of 3-4 

bends, starting from an upright posture and bending forward. Figure 8(a) plots 

the results of this validation study — 0 degrees is vertical and positive angle 

indicates leaning forward. The dotted black line indicates the spine angle 

measured by the Vicon system, the solid black line indicates the angle meas-

ured by our contour tracking method, and the solid gray line indicates the 

absolute error, in degrees, of each measurement. The mean error for the spine 

tracking validation study shown in Fig. 8(a) was 2 degrees. 

 

 

Figure 9. Silhouette frames of shoulder tracking validation that show tracking failure. 

The shoulder tracking was validated in a process similar to the spine track-

ing; however, this time the subject was asked to sway side to side. Figure 8(b) 

shows the results of the shoulder tracking validation study. Again, the dotted 

black line indicates the angle of the shoulders — positive angle indicates the 

subject is leaning to the right and negative angle indicates leaning to the left 

— as measured by the Vicon system, the solid black line indicates the angle 

measured by the contour tracking method, and the solid gray line indicates the 

absolute error, in degrees, at each measurement. The mean error for the 

shoulder tracking validation study shown in Fig. 8(b) was 6 degrees. Note that 

this error includes the portion of the validation where the contour tracking 
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method lost track (at about frame 600). The tracking degraded at the end of 

the validation run because of poor silhouette extraction. Fig. 9 shows the 

frames near the end of the shoulder tracking validation where the tracking 

fails. If we only consider the portion of the validation where the silhouette 

extraction was accurate (up to about frame 600), the mean error was 2 de-

grees. 

4.2 Study Results 

Our pilot study consisted of a qualitative study of key informant interviews 

of 35 older adult participants aged 65 years and older. We recorded images of 

each participant doing each of the three exercises and then showed each par-

ticipant the results of the exercise-feedback system. Structured key informant 

interviews were then conducted to gain feedback about how the interface 

could be developed further to support the participants during their exercise 

routines. These interviews were recorded and transcribed and phenomena that 

emerged and reappeared across all interviews and observations were identi-

fied. Preliminary results of the qualitative study are described in [10] and 

a thorough analysis of the participant interviews is in [2]. 

Preliminary results show that 100% of research participants were interest-

ed in seeing their images after they performed the exercises. All participants 

were most interested in how their posture appeared during the period of exer-

cise. Participants discussed that processed images assisted them to visualize 

how they interacted with the exercise equipment, if they were using a good 

technique to perform the activities, and if they had any unusual movements 

while performing the desired tasks. For example, one participant stated, 

 

Well, it seems to me that [the images tells you how to] use the body 

the way you’re supposed to use it to maintain good leg support and 

arm support. I do sway back and forth, but I don’t think you can do 

anything other than that when your body is moving like it is below 

the trunk. 

 

Many of the key informants interviewed discussed their fear of losing their 

balance and falling while walking; they indicated that the images provided 

them the ability to see if they were maintaining good balance over the core of 

their body, which is important in preventing falls. Some participants indicated 

the images would provide some added value to their exercise safety: making 

them feel safer, less likely to be injured, and less likely to fall. Other partici-

pants indicated that the images were useful but could not really take the place 
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of a trainer who could help interpret what they need to do to be the most suc-

cessful in reaching their exercise goals. Only two participants stated that they 

always felt safe on the exercise equipment and, thus, did not see any benefit to 

the interface. 

Figures 10(a,b) provide a comparative example of two study participants. 

The participant shown in Fig. 1 had issues both with posture, hunching, and 

gait, which manifested as a significant limp. In contrast to the participant 

shown in Fig. 1, the participant shown in Fig. 11 had good mobility and little 

to no afflictions that affected gait and posture. Figure 10(a) shows the spine 

angle plot of the participant shown in Fig. 1 and Fig. 10(b) shows the spine 

angle plot of the participant shown in Fig. 11. As these plots show, the con-

tour tracking method is able to detect not only the over difference in the par-

ticipants’ postures — as represented by the overall deviation from 0 degrees 

— but the differences in their gaits are shown by the differences in the pat-

terns of the two plots. 

5 Conclusions and Future Work 

Our exercise feedback interface has broad application in fields where mea-

suring human body movement is important — e.g. physical therapy, sports 

medicine, and nursing. We applied our methods to eldercare, specifically to 

improve the safety and effectiveness of exercise. Our study included key in-

formant interviews of 35 older adult participants and these interviews indi-

cated that our interface was both effective in showing older adults information 

on how they move while they exercise, but, also, showing older adults areas in 

which they could improve their exercise. 
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(a) Spine angle plot of participant with limp 

 

(b) Spine angle plot of participant with good mobility 

Figure 10. Spine angle plots that show how contour tracking captures posture infor-

mation 
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(a) Side view video frame of  

treadmill exercise 

 

(b) Rear view video frame of  

treadmill exercise 

Figure 11. Sample video frames of participant with good mobility on treadmill. 

The markerless system has potential uses for the clinician as well. Quantit-

ative information can be derived from the kinematic data to use as baseline 

measurements for comparisons throughout a rehabilitation program; e.g. fol-

lowing an invasive surgery such as joint replacement. Periodic feedback using 

the system could be used to track progress and help with patient education 

regarding body mechanics that prevent further postural abnormalities and 

consequent adaptations. 

The clinician will be able to collect objective data concerning posture dur-

ing different functional activities and assess symmetry of movement between 

left and right sides. Immediate postural feedback is available to the patient 

and the health-care provider to facilitate correction of faulty positions and 

movements during exercise. The ability to look at specific contours on the 

video will help emphasize potential problem areas specific to the patient re-

sulting in earlier therapeutic interventions. 

In conclusion, the contour tracking method we present in this paper has di-

rect and pertinent benefits. We validated our method against a gold-standard 

motion capture system, the Vicon 3D marker-based system, and showed that 

our system is accurate in measuring the angle of the spine and shoulders rela-

tive to the horizontal floor plane. Initial validation experiments showed that 

our technique is quite accurate with only a 2 degree error in measuring the 

angle of the spine and shoulders. Additionally, our technique is generalizable, 

such that health professionals could choose to track other parts of the body 

that can be represented by a rigid contour template. 

A common theme among the key informant interviews was that partici-

pants were not provided with a goal on the interface. The participants desired 

an expert-guided goal or demonstration that would help them achieve a proper 

and safe exercise form. In the future we hope to use the results of the contour 

tracking to provide a synchronized video representation of an expert perform-
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ing the same exercise as the participant. Additionally, feedback could be pro-

vided in the form of a linguistic goal — ―stand up straight‖ — or quantitative 

goal — green and red regions on the graph that represent a ―good‖ and ―bad‖ 

exercise form. 

Currently, we are adapting the contour tracking methods for use in a home 

environment. A large part of our ongoing eldercare research is the use of 

technology to help older adults maintain independence. We are investigating 

the use of silhouette-based techniques to detect falls, assess mobility, and 

perform activity analysis. These techniques are important to effectively and 

inexpensively address the needs of our aging population. 
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