Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
7th International Conference System Safety: Human - Technical Facility - Environment, CzOTO 2018 (7 ; 12-14.12.2018 ; Zakopane, Poland)
Języki publikacji
Abstrakty
Currently, a very big problem of cities in Europe and the world is air pollution with combustion products of car fuels, generation of heat and electricity. These impurities affect the microclimate of cities significantly. Pollution not only affects the area outside buildings, but getting into their interior through ventilation systems, which has an adverse effect on the indoor environment of buildings. High concentrations of CO 2, cause a weakening of concentration in working people, which affects the deterioration of safety and work efficiency. For assessing air quality improvement on “green roofs”, a field study of CO 2 content has been carried out on the “green roof” of a four-storey building, on a completely identical non-greened building, and on a highway with high-density traffic near them in Kiev. It was found that greening the roof significantly reduces the CO 2 content from 501 ppm on the road and 452 ppm on the roof without protection to 410-415 ppm. It improves the conditions in which people work and rest.
Wydawca
Rocznik
Tom
Strony
419--424
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Kyiv National University of Construction and Architecture, Ukraine
autor
- Kyiv National University of Construction and Architecture, Ukraine
autor
- Czestochowa University of Technology, Poland
Bibliografia
- [1] Alperen Meral, А., Başaran, N., Yalçınalp, Е., Doğan, Е., Kıvanç Ak, М., Eroğlu, Е., 2018. A Comparative Approach to Artificial and Natural Green Walls According to Ecological Sustainability. Sustainability, 10(6), 1-16, DOI: 10.3390/su10061995
- [2] Chen, Н., Ma, J., X Wang, Х., Xu, Р., Zheng, S., Zhao, Y., 2018. Effects of Biochar and Sludge on Carbon Storage of Urban Green Roofs, Forests, 9(7), 1-16, DOI: 10.3390/f9070413.
- [3] Gorny, A., 2018. Safety in ensuring the quality of production – the role and tasks of standards requirements. MATEC Web Conf., 183, DOI:10.1051/matecconf/201818301005.
- [4] Itrashvili L., Iremashvili I., Ujma A., 2017. Device green covering of roofs with small carried capacity. Budownictwo o zoptymalizowanym potencjale energetycznym. 2(20), 121-128, DOI:10.17512/bozpe.2017.2.16.
- [5] Jian-feng, L., Wai Onyx, W. H., Li, Y. S., Zhan, Jie-min, Alexander Ho, Y., James, L., Eddie, Lam., 2010. Effect of green roof on ambient CO2 concentration. Building and Environment, 45(12), 2644-2651, DOI: 10.1016/j.buildenv.2010.05.025.
- [6] Kristin, L., Getter, D., Bradley, R., Philip Robertson, G., Bert, M., Cregg, J., 2009. Andresen Carbon sequestration potential of extensive green roofs. Environmental Science and Technology, 43(19), 7564-7570, DOI: 10.1021/es901539x.
- [7] Kuronuma, T., Watanabe, H., Ishihara, T., Kou, D., Toushima, K., Ando, M., Shindo, S., 2018. CO2 Payoff of Extensive Green Roofs with Different Vegetation Species. Sustainability, 10(7), 1-12, DOI: 10.3390/su10072256.
- [8] Margareth, V., Sergio, V., Héctor, J., Waldo, B., Jorge, G., Cynnamon, D., Eduardo, L., 2018. Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates. Sustainability, 10(7), 1-18, DOI: 10.3390/su10072431.
- [9] Mayrand, F., Clergeau, P., 2018. Green Roofs and Green Walls for Biodiversity Conservation: A Contribution to Urban Connectivity. Sustainability, 10(4), 1-13, DOI: 10.3390/su10040985.
- [10] MPC CO2 in the air of the working zone. Access mode: http://iceoom.com.ua/blog/articles/predelno-dopustimaya-koncentracuya-pdk/
- [11] Poorova Z., Vranayova Z., 2014. Green-roof doghouse and its sustainable design possibilities. Budownictwo o zoptymalizowanym potencjale energetycznym, 2(14), 75-81.
- [12] Qin, Н., Hong, В., Jiang, R., 2018. Are Green Walls Better Options than Green Roofs for Mitigating PM10 Pollution? CFD Simulations in Urban Street Canyons. Sustainability, 10(8), 1-21, DOI: 10.3390/su10082833.
- [13] Sanderman, J., Amundson, R., 2009. A Comparative Study of Dissolved Organic Carbon Transport and Stabilization in California Forest and Grassland Soils. Biogeochemistry, 92(1/2), 41-59, DOI: 10.1007/s10533-008-9249-9.
- [14] Tkachenko, T., Міleikovskyi, V., 2018. Geometric Basis of the Use of “Green Constructions” for Sun Protection of Glazing. 18th International Conference on Geometry and Graphics. ICGG 2018, Springer, 1096-1107, DOI:10.1007/978-3-319-95588-9_94.
- [15] Tkachenko, T., 2018. Energy Efficiency of “Green Structures” in Cooling Period. International Journal of Engineering & Technology, 7 (3.2), 453-457.
- [16] Tuttolomondo, Т., Fascella, G., Licata, M., Schicchi, R., Gennaro, М. С., La Bella, S., Leto, С., Aprile, S., 2018. Studies on Sedum taxa found in Sicily (Italy) for Mediterranean extensive green roofs. Italian Journal of Agronomy, 13(2), 148-154, DOI: 10.4081/ija.2018.1077.
- [17] Ujma, A., Sowier-Kasprzyk I., 2015. The Rainwater from the Roofs of Buildings in the System of Stormwater Management. Visnik Nacional'nogo Universitetu Vodnogo Gospodarstva ta Prirodokoristuvannia, 1, 69, 79-91.
- [18] Yanling, L., Roger, W., Babcock, Jr., 2014. Green roofs against pollution and climate change. Agronomy for Sustainable Development, 34, 695-705, DOI: 10.1007/s13593-014-0230-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca1a6293-3703-440f-b4f6-47d3ee845032