PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experience in modelling of a single-stage silica gel-water adsorption chiller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat utilization for cooling capacity production is nowadays a desirable challenge in several industrial applications. There are lots of industrial processes with low parameters of heat generated as by-product, which utilization is very important to improve theirs total energy efficiency. Waste heat driven chillers seem to be great competitors for mechanical chillers. Among them special attention should be paid to adsorption chillers, since they can be powered with low – temperature heat sources. The paper presents a model of a single-stage adsorption chiller with silica gel as adsorbent and water, acting as a refrigerant. The performed model allows to predict the behaviour of the adsorption chiller, among others the main energy efficiency factors, such as coefficient of performance (COP) and cooling capacity (CC) for different working conditions.
Rocznik
Tom
Strony
367--386
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Instytut Techniki i Systemów Bezpieczeństwa, Akademia im. Jana Długosza, al. Armii Krajowej 13/15, 42-200 Częstochowa, phone: 34 361 59 70
autor
  • Fortum Corporation, Czestochowa CHP
autor
  • Center of Energy AGH University of Science and Technology
autor
  • Center of Energy AGH University of Science and Technology
Bibliografia
  • AKISAWA A., MIYAZAKI T. 2010. Multi-bed adsorption heat pump cycles and their optimal operation. In: Advances in Adsorption Technology. Eds. B.B. Saha, K.C. Ng. Nova Science Publishers, p. 241-279.
  • ALAM K.C.A., KANG Y.T., SAHA B.B., AKISAWA A., KASHIWAGI T. 2003. A novel approach to determine optimum switching frequency of a conventional adsorption chiller. Energy, 28: 1021-1037.
  • AMMAR Y., JOYCE S., NORMAN R., WANG Y., ROSKILLY A.P. 2012. Low grade thermal energy sources and uses from the process industry in the UK. Applied Energy, 89: 3-20.
  • ARISTOV Y.I., GLAZNEV I.S., GIRNIK I.S. 2012. Optimization of adsorption dynamics in adsorptive chillers: loose grains configuration. Energy, 46: 484-492.
  • ARISTOV Y.I., TOKAREV M.M., FRENI A., GLAZNEV I.S., RESTUCCIA G. 2006. Kinetics of water adsorption on silica Fuji Davison RD. Microporous and Mesoporous Materials, 96: 65-71.
  • BOELMAN E., SAHA B.B., KASHIWAGI T. 1995. Experimental investigation of a silica gel water adsorption refrigeration cycle - the influence of operating conditions on cooling output and COP. ASHRAE Transactions, 101: 358-366.
  • CHAKRABORTY A., SAHA B.B., ARISTOV Y.I. 2014. Dynamic behaviors of adsorption chiller: Effects of the silica gel grain size and layers. Energy, 78: 304-312.
  • CHEN C.H, SCHMID G., CHAN C.T., CHIANG Y.C., CHEN S.L. 2015. Application of silica gel fluidised bed for air-conditioning systems. Applied Thermal Engineering, 89: 229-238.
  • CHOROWSKI M., PYRKA P. 2015. Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration. Energy, 92: 221-229.
  • CHUA H.T., NG K.C., CHAKRABORTY A.O.N.M., OTHMAN M.A. 2002. Adsorption Characteristics of Silica Gel + Water System. Journal of Chemical & Engineering Data, 47: 1177-1181.
  • CHUA H.T., NG K.C., MALEK A., KASHIWAGI T., AKISAWA A., SAHA B.B. 2001. Multi-bed regenerative adsorption chiller-improving the utilization of waste heat and reducing the chilled water outlet temperature fluctuation. International Journal of Refrigeration, 24(2): 124-136.
  • CHUA H.T, NG K.C, WANG W., YAP C., WANG X.L. 2004. Transient modeling of a two-bed silica gel-water adsorption chiller. International Journal of Heat and Mass Transfer, 47: 659-669.
  • DEMIR H., MOBEDI M., U¨ LKU¨, S. 2008. A review on adsorption heat pump: problems and solutions. Renew Sustain Energy Rev, 12: 2381-2403.
  • GRÄBER M., KIRCHES C., BOCK H.G., SHLÖDER J.P., TEGETHOFF W., KÖHLER J. 2011. Determining the optimum cyclic operation of adsorption chillers by a direct method for periodic optimal control. International Journal of Refrigeration, 34: 902-913.
  • HABIB K., CHOUDHURY B., CHATTERJEE P.K., SAHA B.B. 2013. Study on a solar heat driven dual-mode adsorption chiller. Energy, 63: 133-141.
  • HABIB K., SAHA B.B., RAHMAN K.A., CHAKRABORTY A., KOYAMA S., NG K.C. 2010. Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs. International Journal of Refrigeration, 33: 706-713.
  • HAMED A.M. 2005. Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed. Renewable Energy, 30: 1913-1921.
  • HORIBE A., HARUKI N., HIRAISHI D. 2013. Sorption-desorption operations on two connected fluidized bed using organic sorbent powder. International Journal of Heat and Mass Transfer, 65: 817-825.
  • JEON J., LEE S., HONG D., KIM Y. 2010. Performance evaluation and modeling of a hybrid cooling system combining a screw water chiller with a ground source heat pump in a building. Energy, 35: 2006-2012.
  • KRZYWANSKI J., NOWAK W. 2012. Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach. International Journal of Heat and Mass Transfer, 55: 4246-4253.
  • KRZYWANSKI J., NOWAK W. 2015a. Artificial Intelligence Treatment of SO2 Emissions from CFBC in Air and Oxygen-Enriched Conditions. J. Energy Eng. - ASCE, 142(1): 04015017.
  • KRZYWANSKI J., CZAKIERT T., BLASZCZUK A., RAJCZYK R., MUSKALA W., NOWAK W. 2015b. A generalized model of SO2 emissions from large- and small-scale CFB boilers by artificial neural network approach. Part 1. The mathematical model of SO2 emissions in air-firing, oxygen-enriched and oxycombustion CFB conditions. Fuel Processing Technology, 137: 66-74.
  • KRZYWANSKI J., CZAKIERT T., BLASZCZUK A., RAJCZYK R., MUSKALA W., NOWAK W. 2015c. A generalized model of SO2 emissions from large- and small-scale CFB boilers by artificial neural network approach. Part 2. SO2 emissions from large- and pilot-scale CFB boilers in O2/N2, O2/CO2 and O2/RFG combustion atmospheres. Fuel Processing Technology, 139: 73-85.
  • LOH W.S. 2010. Experimental and theoretical studies of waste heat driven pressurized adsorption chillers. National University of Singapore.
  • LOH W.S., SAHA B.B., CHAKRABORTY A., NG K.C., CHUN W.G. 2010. Performance analysis of waste heat driven pressurized adsorption chiller. Journal of Thermal Science and Technology, 5: 252-265.
  • LU Z., WANG R., XIa Z. 2013. Experimental analysis of an adsorption air conditioning with microporous silica gel-water. Applied Thermal Engineering, 50: 1015-1020.
  • MARLINDA A.S.U., MIYAZAKI T., YUKI U.E.D.A., AKISAWA A. 2010. Numerical Analysis of double effect adsorption refrigeration cycle using silica-gel/water working pair. Energies, 9: 1704-1720.
  • MYAT A., NG K.C., THU K., YOUNG-DEUK K. 2013. Experimental investigation on the optimal performance of Zeolite-water adsorption chiller. Applied Energy, 102: 582-590.
  • OKUNEV B.N., ARISTOV Y.I. 2014. Making adsorptive chillers faster by a proper choice of adsorption isobar shape: Comparison of optimal and real adsorbents. Energy, 76: 400-405.
  • SAHA B.B. 2003. Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller. International Journal of Multiphase Flow, 29(8): 1249-1263.
  • SAHA B.B., BOELMAN E.C., KASHIWAGI T. 1995. Computational analysis of an advanced adsorptionrefrigeration cycle. Energy, 20: 983-294.
  • SAHA B.B., BOELMAN E., KASHIWAGI T. 1995. Computer simulation of a silica gel water adsorption refrigeration cycle - the influence of operating conditions on cooling output and COP. ASHRAE Transactions, 101: 348-357.
  • SAHA B.B., KOYAMA S., KASHIWAGI T., AKISAWA A., NG, K.C., CHUA H.T. 2003. Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system. International Journal of Refrigeration, 26(7): 749-757.
  • SAPIENZA A., SANTAMARIA S., FRAZZICA A., FRENI A. 2011. Influence of the management strategy and operating conditions on the performance of an adsorption chiller. Energy, 36: 5532-5538.
  • SEKRET R., TURSKI M. 2012. Research on an adsorption cooling system supplied by solar energy. Energy and Buildings, 51: 15-20.
  • STANEK W., GAZDA W. 2014. Exergo-ecological evaluation of adsorption chiller system. Energy, 76: 42-48.
  • SZYC M., NOWAK W. 2014a. Operation of an adsorption chiller in different cycle time conditions. Chemical and Process Engineering, 4, 35: 109-119.
  • SZYC M., NOWAK W. 2014b. Analysis of cooling cycle in single-stage adsorption chiller. Polish Journal of Environmental Studies, 23: 1423-1426.
  • THU K. 2010. Adsorption desalination: theory & experiments [dissertation]. National University of Singapore.
  • THU K., YOUNG-DEUK K., MYAT A., CHUN W.G., NG K.C. 2013. Entropy generation analysis of an adsorption cooling cycle. International Journal of Heat and Mass Transfer, 60: 143-155.
  • QIAN S., GLUESENKAMP K., HWANG Y., RADERMACHER R., CHUN H.H. 2013. Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite. Energy, 60: 517-526.
  • WANG Q., GAO X., XU J.Y., MAIGA A.S., CHEN G.M. 2012. Experimental investigation on a fluidized-bed adsorber/desorber for the adsorption refrigeration system. International Journal of Refrigeration, 35: 694-700.
  • WANG X., HE Z., CHUA H., 2015. Performance simulation of multi-bed silica gel-water adsorption chillers. International Journal of Refrigeration, 52: 32-41.
  • WANG R.Z., XIA Z.Z., WANG L.W., LU Z.S., LI S.L., LI T.X., WU J.Y., HE S. 2011. Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy. Energy, 36: 5425-5439.
  • WANG D., XIA Z., WU J., WANG R., ZHAI H., DOU W. 2005. Study of a novel silica gelewater adsorption chiller. Part I. design and performance prediction. International Journal of Refrigeration, 28: 1073-1083.
  • WIN K.K., NOWAK W., MATSUDA H., HASATANI M., BIS Z., KRZYWAŃSKI J., GAJEWSKI W. 1995. Transport Velocity of Coarse Particles in Multi - Solid Fluidized Bed. Journal of Chemical Engineering of Japan, 28(5): 535-540.
  • WU D.W., WANG R.Z. 2006. Combined cooling, heating and power: A review. Progress in Energy and Combustion Science, 32: 459-495.
  • YANG W.C. 2003. Handbook of Fluidization and Fluid-Particle Systems. Marcel Dekker Inc.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca1a3346-0ca8-44ec-9fe8-d68ef09eeb19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.