PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A cyclonic-static micro bubble flotation column for enhancing coalescence of oil droplets from emulsion

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work a novel cyclonic-static micro bubble flotation column, using hydraulic separator with a conventional flotation column, was developed to separate oil droplets from emulsions. The system integrated the cyclonic and laminar flow coalescence with the pipe flow coalescence. The effect of process parameters such as circulation pressure, aeration rate, feed volumetric flow rate and viscosity of fluid on the efficiency of multi-flow pattern coalescence was investigated. The obtained results indicated that the coalescence efficiency increased with the circulation pressure, feed volumetric flow rate and aeration rate, whereas an increase in viscosity of fluid reduced the extent of coalescence. Besides, the size distribution of oil droplets in the cyclonic separator, pipe flow section and column flotation section were simulated in the flotation column using a special software. The simulation was compared with experimental data on the mean size of oil droplets.
Rocznik
Strony
307--320
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, Xuzhou, Jiangsu, PR China
autor
  • National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, Xuzhou, Jiangsu, PR China
autor
  • National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, Xuzhou, Jiangsu, PR China
Bibliografia
  • BRESCIANI A.E., MENDONCA C.F.X., ALVES R.M.B., MASCIMENTO C.A.O., 2010. Modeling the kinetics of the coalescence of water droplets in crude oil emulsions subject to an electric field, with the cellular automata technique. Comput. Chem. Eng. 34, 1962-1968.
  • ATA S., PUGH R.J., JAMESON G.J., 2011. The influence of interfacial ageing and temperature on the coalescence of oil droplets in water. Colloid and Surface A 374, 96-101.
  • BOYSON T.K., PASHLEY R.M., 2007. A study of oil droplet coalescence. J. Colloid Interf. Sci. 316, 59-65.
  • DYAKOWSKI T., WILLIAMS R A., 1996. Prediction of high solids concentration regions within a hydrocyclone. Power Technol. 87, 43-47.
  • FREDRICK E., WALSTRA P., DEWETTINCK K., 2010. Factors governing partial coalescence in oil-in-water emulsions. Adv. Colloid Interface Sci. 153, 30-42.
  • PAUNGU G.D., FEKE D.L., 2007. Droplet transport and coalescence kinetics in emulsions subjected to acoustic fields. Ultrasonics 46, 289-302.
  • URBINA-VILLALBA G., GARCIA-SUCRE M., 2001. Influence of surfactant distribution on the stability of oil/water emulsions towards flocculation and coalescence. Colloid. Surface A 190, 111-116.
  • HAN Z., WANG J., LAN X., 2004. Fluent simulation examples and Application. Beijing Institute of Technology press: Beijing, China.
  • HONG A., FANE A. G., BURFORD R., 2003. Factors affecting membrane coalescence of stable oil-in-water emulsions. J. Membrane Sci. 222, 19-39.
  • JI F., LI C., DONG X., 2009. Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. J. Hazard. Mater. 164, 1346-1351.
  • JIN X., JIN Y., WANG J., SUN Z., CHEN X., 2009. Separation performance of gas-liquid cyclone separator. J. China Univ. Petroleum 33, 124-129.
  • JUNJI F., HARUKI T., NARUYA I., 2009. Possibility of coalescence of water droplets in W/O emulsions by means of surface processes. Colloid Surface A 333, 53-58.
  • LEE C.-M., SAMS G.W., WAGNER J.P., 2001. Power consumption measurements for ac and pulsed dc for electrostatic coalescence of water-in-oil emulsions. J. Electrostat. 53, 1-24.
  • LI J., GU Y., 2005. Coalescence of oil-in-water emulsions in fibrous and granular beds. Sep. Purif. Technol. 42, 1-13.
  • LIU J., 1998. Study on cyclonic-static micro bubble flotation column and preparation technology of clean coal, Ph.D. dissertation. China University of Mining and Technology, Beijing, China.
  • LI X., LIU J., WANG Y., XU H., CAO Y., DENG X., 2015. Separation of oil from wastewater by coal adsorption-column flotation. Sep. Sci. Technol. 50, 583-591.
  • MITRE J.F., TAKAHASHI R.S.M., RIBEIRO C.P., 2010. Analysis of breakage and coalescence models for bubble columns. Chem. Eng. Sci. 65, 6089-6100.
  • NI L., HE L., 2007. Experimental studies of separating behavior of gravitational oil-water separator with a coalescing internal install. Oil Field Equipment 36, 61-64.
  • PANGU G.D., FEKE D.L., 2009. Kinetics of ultrasonically induced coalescence within oil/water emulsions: Modeling and experimental studies. Chem. Eng. Sci. 64, 1445- 1454.
  • QIAN Z., HU X., HUAI W., XUE W., 2011. Numerical simulation of sediment erosion by submerged jets using an Eulerian mode. Sci. China: Technological Sciences, 41, 419-425.
  • QU X., NI L., LIU X., ZHU W., 2009. Research on the factors of impacting the coalescence efficiency. J. Filtr. Separat. 19, 14-16.
  • SOKOLOVIC R.M.S., VULIC T.J., SOKOLOVIC S.M., 2007. Effect of bed length on steady-state coalescence of oil-in-water emulsion. Sep. Purif. Technol. 56 , 79-84.
  • SCOTT K., JACHUCH R.J., HALL D., 2001. Cross flow microfiltration of water-in-oil emulsion using corrugated membranes. Sep. Purif. Technol. 11, 431-441.
  • SCHUTZ S., GORBACH G., PIESCHE M., 2009. Modeling fluid behavior and droplet interactions during liquid–liquid separation in hydrocyclones. Chem. Eng. Sci. 64, 3935-3952.
  • MARTULA S.D., BONNECAZE R.T., LLOYD D.R., 2003. The effects of viscosity on coalescence-induced coalescence. Int. J. Multiphas. Flow 29, 1265-1282.
  • WANG F., 2004. Fluid dynamics analysis: Theory and application CFD software. Tsinghua University press: Beijing, China.
  • WANG R., ZHANG K., WANG G., 2007. Fluent technology and application. Tsinghua University press: Beijing, China.
  • WANG Z., 2003. Research on the structure and the characteristics of compound hydrocyclones, Ph.D. dissertation. Harbin Engineering University, Harbin, China.
  • WILKINSON D., WALDIE B., 1994. CFD and experimental studies of fluid and particle flow in horizontal primary separation. Chem. Eng. Res. Des. 72, 189-196.
  • YEUNG A., MORAN K., MASLIYAH J., 2003. Shear-induced coalescence of emulsified oil drops. J. Colloid Interf. Sci. 265, 439-443.
  • YUAN H., ZHANG X., 2005. Investigation into mechanism of coalescence in vortex field. Chem. Eng. 33, 30-33.
  • ZHANG L., HE L., WANG T., LÜ Y., HE Z., 2009. Separating behavior with coalescence internals in separator. J. Chem. Eng. Chinese Univ. 23, 345-350.
  • ZHANG M., YUAN H., 2003. Methods, mechanism and application of coalescence separation. J. Filtr. Separat. 13, 44-46.
  • ZHAO X., SU M., ZHANG C. MIAO Y., 2000. CFD techniques for design of fluid machinery. Fluid Machinery 28, 22-25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca1886e3-84af-4eca-a662-8003bbc4b78f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.