PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analyses of reconfigurable dumbbell-shaped and modified h-shaped DGSs in millimeter wave band

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Projektowanie i analizy rekonfigurowalnych systemów DGS w kształcie hantli i zmodyfikowanych systemów DGS w kształcie litery H w paśmie fal milimetrowych
Języki publikacji
EN
Abstrakty
EN
The design and analyses of reconfigurable dumbbell-shaped and modified H-shaped Defected Ground Structures (DGS) in the millimeter wave band (26/28 GHz band) are presented in this paper. The proposed DGSs were designed to be a reconfigurable between bandstop and allpass responses that would be used for 5G interference mitigation and as well as in RF switch design. In the design process, a mathematical model was developed for the analysis of reconfigurable capability between these two responses. Then, based on the E and H field concentration in the electromagnetic (EM) simulation, a suitable location of a PIN diode for the electronically controlled between bandstop and allpass was physically identify on the proposed reconfigurable DGS. Finally, a preliminary verification with an ideal PIN diode (open and short circuited) on the fabricated design was validated with the simulation results. Results showed that the proposed reconfigurable DGS can be changed between bandstop and allpass. The attenuation of the bandstop was more than -20 dB and the insertion loss of the allpass was lower than -3 dB in the 26/28 GHz band.
PL
W artykule przedstawiono projektowanie i analizy rekonfigurowalnych i zmodyfikowanych struktur naziemnych w kształcie hantli (DGS) w paśmie fal milimetrowych (pasmo 26/28 GHz). Proponowane systemy gwarancji depozytów zostały zaprojektowane tak, aby były rekonfigurowalne między pasmowym zatrzymaniem a wszystkimi odpowiedziami przejścia, które byłyby wykorzystywane do łagodzenia zakłóceń 5G, a także do projektowania przełączników RF. W procesie projektowania opracowano model matematyczny do analizy rekonfigurowalnych możliwości między tymi dwiema odpowiedziami. Następnie, w oparciu o stężenie pola E i H w symulacji elektromagnetycznej (EM), odpowiednia lokalizacja diody PIN dla elektronicznie sterowanego między pasmowym ogranicznikiem a wszystkimi przejściami została fizycznie zidentyfikowana na proponowanym rekonfigurowalnym DGS. Na koniec wstępna weryfikacja z idealną diodą PIN (otwartą i zwartą) na wytworzonej konstrukcji została zweryfikowana wynikami symulacji. Wyniki pokazały, że proponowany rekonfigurowalny system DGS można zmieniać między bandstopem a all pass. Tłumienie ogranicznika pasma było większe niż 20 dB, a tłumienie wtrąceniowe wszystkich przebiegów było mniejsze niż -3 dB w paśmie 26/28 GHz.
Rocznik
Strony
96--100
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
autor
  • Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia
  • Wireless Communication Centre (WCC), Universiti Teknologi Malaysia (UTM), Malaysia
  • Al-Nisour University College, Baghdad, Iraq
Bibliografia
  • [1] Muchhal, Nitin, Arnab Chakraborty, Tanvi Agrawal, and Shweta Srivastava. "Miniaturized and selective half-mode substrate integrated waveguide bandpass filter using Hilbert Fractal for sub-6 GHz 5G applications." IETE Journal of Research (2022): 1-8.
  • [2] Zakaria, Z., N. A. Shairi, R. Sulaiman, and W. Y. Sam. "Design of reconfigurable defected ground structure (DGS) for UWB application." In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), pp. 195-198. IEEE, 2012.
  • [3] Mahant, Keyur, and Hiren Mewada. "Substrate Integrated Waveguide based dual-band bandpass filter using split ring resonator and defected ground structure for SFCW Radar applications." International Journal of RF and Microwave Computer-Aided Engineering 28, no. 9 (2018): e21508.
  • [4] Yee, See Khee, Soon Chong Johnson Lim, Pih Shyan Pong, and Samsul Haimi Dahlan. "Microstrip defected ground structure for determination of blood glucose concentration." Progress In Electromagnetics Research C 99 (2020): 35-48.
  • [5] Shah, Shaharil Mohd, M. Mohamad, S. A. Hamzah, Z. Z. Abidin, F. C. Seman, N. Katiran, H. A. Majid, A. Ashyap, and S. Mohamad. "A 2.45 GHz microstrip antenna with harmonics suppression capability by using defected ground structure." Bulletin of Electrical Engineering and Informatics 9, no. 1 (2020): 387-395.
  • [6] Jabire, Adamu Halilu, Anas Abdu, Sani Saminu, Abubakar Muhammad Sadiq, and Mohammed Jajere Adamu. "Isolation Frequency Switchable MIMO Antenna for PCS, WIMAX and WLAN Application." ELEKTRIKA-Journal of Electrical Engineering 18, no. 3 (2019): 27-33
  • [7] Riaz, Sharjeel, Xiongwen Zhao, and Suiyan Geng. "A frequency reconfigurable MIMO antenna with agile feedline for cognitive radio applications." International Journal of RF and Microwave Computer-Aided Engineering 30, no. 3 (2020): e22100.
  • [8] Komarov, Vasyl, Oleksii Barybin, and Yulia V. Rassokhina. "Low-Pass Load Matching Network Design Using Dumbbell Shaped DGS for High-Efficiency Microwave Power Amplifiers." In 2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), pp. 1-4. IEEE, 2019.
  • [9] Alngar, Omar Z., Adel Barakat, and Ramesh K. Pokharel. "High PAE CMOS Power Amplifier With 44.4% FBW Using Superimposed Dual-Band Configuration and DGS Inductors." IEEE Microwave and Wireless Components Letters 32, no. 12 (2022): 1423-1426.
  • [10] Rassokhina, Yulia V., Dmitrii V. Chernov, and Paolo Colantonio. "High-Efficiency Microwave Power Amplifier with Higher Harmonics Level Control on Basis of Defected Ground Structure Resonators." In 2020 23rd International Microwave and Radar Conference (MIKON), pp. 88-91. IEEE, 2020.
  • [11] Othman, A., H. A. Majid, N. A. Shairi, A. A. Zolkefli, N. Al Fadhali, Z. Z. Abidin, I. M. Ibrahim, and Z. Zakaria. "Millimeter Wave SPDT Discrete Switch Design with Reconfigurable Circle Loaded Dumbbell DGS." In 2022 International Workshop on Antenna Technology (iWAT), pp. 49-52. IEEE, 2022.
  • [12] Khare, Ajay, Santosh Kharat, Akshay Rajapkar, S. M. Rathod, and Makarand Kulkarni. "Design of a Compact Wilkinson Power Divider using Four Asymmetric DGS for Harmonic Suppression." In 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), pp. 353-356. IEEE, 2019.
  • [13] Farooq, Memoona, Amber Abdullah, M. Ayaz Zakir, and Hammad M. Cheema. "Miniaturization of a 3-way power divider using defected ground structures." In 2019 IEEE Asia-Pacific Microwave Conference (APMC), pp. 1503-1505. IEEE, 2019.
  • [14] Tian, Zhen, Yunbo Rao, Zhixian Deng, and Xun Luo. "Reconfigurable Dual-Band Filtering Power Divider With Ultra Wide Stopband Using Hybrid Microstrip/Square Defected Ground Structure." In 2019 IEEE MTT-S International Microwave Symposium (IMS), pp. 428-431. IEEE, 2019.
  • [15] Zankiewicz, Andrzej. "Susceptibility of IEEE 802.11 n networks to adjacent-channel interference in the 2.4 GHz ISM band." Przeglad Elektrotechniczny 88, no. 9b (2012): 287-288.
  • [16] Pang, Bozheng, Tim Claeys, Davy Pissoort, Hans Hallez, and Jeroen Boydens. "A Study on the Impact of the Number of Devices on Communication Interference in Bluetooth Low Energy." In 2020 XXIX International Scientific Conference Electronics (ET), pp. 1-4. IEEE, 2020.
  • [17] Islam, Hashinur, Saumya Das, Tanushree Bose, and Tanweer Ali. "Diode based reconfigurable microwave filters for cognitive radio applications: A review." IEEE Access 8 (2020): 185429- 185444.
  • [18] Choudhury, Debabani. "5G wireless and millimeter wave technology evolution: An overview." In 2015 IEEE MTT-S International Microwave Symposium, pp. 1-4. IEEE, 2015.
  • [19] Cho, Yeongi, Hyun-Ki Kim, Maziar Nekovee, and Han-Shin Jo. "Coexistence of 5G with satellite services in the millimeter wave band." IEEE Access 8 (2020): 163618-163636.
  • [20] Tin, Phu Tran, Duy-Hung Ha, Pham Minh Quang, Nguyen Thanh Binh, and Nguyen Luong Nhat. "Performance of multi hop cognitive MIMO relaying networks with joint constraint of intercept probability and limited interference." TELKOMNIKA (Telecommunication Computing Electronics and Control) 19, no. 1 (2021): 44-50.
  • [21] Saleh, Mohammed Mehdi, Ahmed A. Abbas, and Ahmed Hammoodi. "5G cognitive radio system design with new algorithm asynchronous spectrum sensing." Bulletin of Electrical Engineering and Informatics 10, no. 4 (2021): 2046- 2054.
  • [22] Hattab, Ghaith, Eugene Visotsky, Mark C. Cudak, and Amitava Ghosh. "Uplink interference mitigation techniques for coexistence of 5G millimeter wave users with incumbents at 70 and 80 GHz." IEEE Transactions on Wireless Communications 18, no. 1 (2018): 324-339.
  • [23] Siafarikas, Dimitrios, Elias A. Alwan, and John L. Volakis. "Interference mitigation for 5G millimeter-wave communications." IEEE Access 7 (2018): 7448-7455.
  • [24] Ali, Konpal Shaukat, Hesham Elsawy, Anas Chaaban, and Mohamed-Slim Alouini. "Non-orthogonal multiple access for large-scale 5G networks: Interference aware design." IEEE Access 5 (2017): 21204-21216.
  • [25] Toma, Ogeen H., and Miguel López-Benítez. "Cooperative spectrum sensing: A new approach for minimum interference and maximum utilisation." In 2021 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1-6. IEEE, 2021.
  • [26] Sarma, Subhra S., and Ranjay Hazra. "Interference mitigation methods for D2D communication in 5G network." In Cognitive Informatics and Soft Computing, pp. 521-530. Springer, Singapore, 2020.
  • [27] Siddiqui, Maraj Uddin Ahmed, Faizan Qamar, Faisal Ahmed, Quang Ngoc Nguyen, and Rosilah Hassan. "Interference management in 5G and beyond network: Requirements, challenges and future directions." IEEE Access 9 (2021): 68932-68965.
  • [28] Bri, Seddik, and Adil Saadi. "Reconfigurable ultra wideband to narrowband antenna for cognitive radio applications using PIN diode." TELKOMNIKA (Telecommunication Computing Electronics and Control) 18, no. 6 (2020): 2807-2814.
  • [29] Ahmad, Khalid Subhi, and Mohamad Zoinol Abidin Abd Aziz. "Frequency reconfigurable microstrip antenna array based on reconfigurable defected ground structure." Przegląd Elektrotechniczny 97 (2021).
  • [30] Kingsly, Saffrine, Malathi Kanagasabai, M. Gulam Nabi Alsath, Sangeetha Subbaraj, and Sandeep Kumar Palaniswamy. "Switchable Resonator Based Reconfigurable Bandpass/Bandstop Microstrip Filter." International Journal of Electronics 108, no. 9 (2021): 1610-1622.
  • [31] Narayana, Shriman, and Yatendra Kumar Singh. "Dual-band bandpass to bandstop switchable filter with independently tunable center frequency and bandwidth." Microwave and Optical Technology Letters 63, no. 11 (2021): 2704-2709.
  • [32] Fan, Maoyu, Kaijun Song, Yu Zhu, and Yong Fan. "Compact bandpass-to-bandstop reconfigurable filter with wide tuning range." IEEE Microwave and Wireless Components Letters 29, no. 3 (2019): 198-200.
  • [33] Zahari, M. K., B. H. Ahmad, and N. A. Shairi. "Comparison of Electronically Switchable High Q Bandstop to Bandpass Filters Based on Allpass Network." In 2021 IEEE Symposium on Wireless Technology & Applications (ISWTA), pp. 43-47. IEEE, 2021.
  • [34] Guyette, Andrew C., Eric J. Naglich, and Sanghoon Shin. "Switched allpass-to-bandstop absorptive filters with constant group delay." IEEE Transactions on Microwave Theory and Techniques 64, no. 8 (2016): 2590-2595.
  • [35] Zolkefli, Amirul Aizat, Noor Azwan Shairi, Badrul Hisham Ahmad, Adib Othman, Nurulhalim Hassim, Zahriladha Zakaria, Imran Mohd Ibrahim, and Huda A. Majid. "Switchable bandstop to allpass filter using cascaded transmission line SIW resonators in K-band." Bulletin of Electrical Engineering and Informatics 10, no. 5 (2021): 2617-2626.
  • [36] Psychogiou, Dimitra. "Reconfigurable all-pass-to-bandstop acoustic-wave-lumped-element resonator filters." IEEE Microwave and Wireless Components Letters 30, no. 8 (2020): 745-748.
  • [37] Shairi, N. A., Z. Zakaria, A. M. S. Zobilah, B. H. Ahmad, and P. W. Wong. "Design of SPDT switch with transmission line stub resonator for WiMAX and LTE in 3.5 GHz band." ARPN J. Eng. Appl. Sci 11, no. 5 (2016): 3198-3202.
  • [38] Meng, Fanyi, Kaixue Ma, Kiat Seng Yeo, Chirn Chye Boon, Wei Meng Lim, and Shanshan Xu. "A 220–285 GHz SPDT switch in 65-nm CMOS using switchable resonator concept." IEEE Transactions on Terahertz Science and Technology 5, no. 4 (2015): 649-651.
  • [39] Shairi, N. A., B. H. Ahmad, and Peng Wen Wong. "Switchable radial stub resonator for isolation improvement of SPDT switch." International Journal of Engineering and Technology (IJET) 5, no. 1 (2013): 460-467.
  • [40] Chen, Haidong, Wenquan Che, Tianyu Zhang, Yue Chao, and Wengjie Feng. "SIW SPDT switch based on switchable HMSIW units." In 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), pp. 1-3. IEEE, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca184d1d-8fb3-491d-a680-0e2fd0f47430
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.