PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the thermal behavior of building integrated hybrid solar wall

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Building designers have to think about new strategies to achieve the best sustainable building designs. Well-planned passive solar heating strategies in building design may reduce a building’s energy consumption significantly. In this paper, a proposed design of the south façade of a room by integrating a hybrid solar wall and a window to passively heat a room is studied. The simulations for the three-dimensional model of BIPV Trombe wall system were carried out for December 10th, 2015. The temperature and velocity distribution of indoor air in different positions inside the room are obtained from the simulation results. The obtained results show that the temperature difference between the inlet and the outlet of the solar wall can reach 9°C. The 3D analysis of the proposed model clearly shows that the window’s thermal effect on the passive heating cannot be neglected. Meanwhile, the simulation’s daily electrical efficiency conversion and average indoor air temperature of this system can reach 18% and 28°C, respectively for maximum solar radiation of 470 W/m2.
Rocznik
Strony
144--149
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
  • ETAP Laboratory, Department of Mechanical Engineering, University of Tlemcen, Algeria, Legfef Tlemcen, Algeria, P.B: 13300
  • ETAP Laboratory, Department of Mechanical Engineering, University of Tlemcen, Algeria, Legfef Tlemcen, Algeria, P.B: 13300
Bibliografia
  • [1] Utzinger, D. M., Analysis of Building Components Related to Direct Solar Heating of Building, M.S. Thesis, University of Wisconsin, Madison, 1979.
  • [2] Bassiouny, R., Nader S. A. Koura, An analytical and numerical study of solar chimney use for room natural ventilation, Energy and Buildings, 40, 865-873, 2008.
  • [3] Bassiouny, R., Koura, N. S. A., Effect of solar chimney inclination angle on space flow pattern and ventilation rate, Energy and Buildings, 41, 190-196, 2009.
  • [4] Guohui, G.: Simulation of buoyancy-driven natural ventilation of buildings-Impact of computational domain, Energy and Buildings, 42, 1290-1300, 2010.
  • [5] Basak K. K., Zerrin Y., The comparison of Trombe wall systems with single glass, double glass and PV Panels, Renewable Energy, 45, 111-118, 2012
  • [6] Bourdeau, L., Jaffrin, A., Actual performance of a latent heat diode wall. In: Proceedings of Izmir International SymposiumII on Solar Energy Fundamentals and applications, Izmir Turkey, 1979.
  • [7] Bourdeau, L., Study of two passive solar systems containing phase change materials for thermal storage. In: Hayes, J., Snyder, R. (Eds.), Proceedings of the Fifth National Passive Solar Conference, 19-26 October, Amherst, Newark, DE, American Solar Energy Society, 297, 1980.
  • [8] Knowles, T., Proportioning composites for eflcient thermal storage walls, Solar Energy, 31(3), 319-326, 1983.
  • [9] Zalewski, L., Joulin, A., El Lassue, S., Dutil, I., Rousse, D., Experimaterial, Solar Energy, 86, 208-2194, 2012.
  • [10] Jie, J., Hua, Y., Wei, H., Gang, P., Jianping, L., Bin, J., Modeling of a novel Trombe wall with PV cells, Building and Environment, in press.
  • [11] Mc Adams, W. H., Heat Transmission, third edition, McGraw-Hill, New York, 1954.
  • [12] Zondag H., De Vries, D. W., van Helden, W. G. I., van Zolingen, R., van Steenhoven, A. A., The thermal and electrical yield of a PV-thermal collector, Sol. Energy, 72(2), 113-28, 2002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca1543f7-be26-4205-ac32-7959e5872986
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.