PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intra-individual variability of dental enamel δ13C and δ18O values in Late Pleistocene cave hyena and cave bear from Perspektywiczna Cave (southern Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An important source of palaeoecological and palaeoenvironmental information is intra-specimen variability of isotopic composition of mammal tooth enamel. It reflects seasonal or behavioral changes in diet and climate occurring during a life of the animal. While well-known in ungulates, in carnivorans this variability is poorly recognized. However, carnivoran remains are amongst the most numerous in the Pleistocene fossil record of terrestrial mammals, so their isotopic signature should be of particular interest. The aim of the study was to verify if enamel of a fossil cave hyena (Crocuta crocuta spelaea) and a cave bear (Ursus ingressus) records any regular inter- or intra-tooth isotopic variability. We examined intra-individual variability of δ13C and δ18O values in permanent cheek teeth enamel of fossil cave hyena and cave bear from the site of the Perspektywiczna Cave (southern Poland). We conclude that the isotopic variability of the cave hyena is low, possibly because enamel mineralization took place when the animals still relied on a uniform milk diet. Only the lowermost parts of P3 and P4 enamel record a shift toward an adult diet. In the case of the cave bear, the sequence of enamel formation records periodic isotopic changes, possibly correlating with the first seasons of the animal life.
Czasopismo
Rocznik
Strony
121--128
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Institute of Paleobiology, Polish Academy of Sciences. Twarda 51/55, 00-818 Warszawa, Poland
  • Faculty of Geology, University of Warsaw. Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • Institute of Archaeology, Nicolaus Copernicus University in Toruń. Szosa Bydgoska 44/48, 87-100 Toruń, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences. Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • Andrews, P., Turner, A., 1992. Life and death of the Westbury bears. Annales Zoologici Fennici 28, 139–149.
  • Balasse, M., 2002. Reconstructing Dietary and Environmental History from Enamel Isotopic Analysis: Time Resolution of Intra-tooth Sequential Sampling. International Journal of Osteoarchaeology 12, 155–165.
  • Bendrey, R., Vella, D., Zazzo, A., Balasse, M., Lepetz, S., 2015. Exponentially decreasing tooth growth rate in horse teeth: implications for isotopic analyses. Archaeometry 57, 1–21.
  • Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F., Jaubert, J., 2009. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth and Planetary Science Letters 283, 133–143.
  • Blumenthal, S.A., Cerling, T.E., Chritz, K.L., Bromage, T.G., Kozdon, R., Valley, J.W., 2014. Stable isotope time-series in mammalian teeth: In situ δ18O from the innermost enamel layer. Geochimica et Cosmochimica Acta 124, 223–236.
  • Bocherens, H., 2004. Cave bear palaeoecology and stable isotopes: checking the rules of the game. In: Philippe, M., Argant, A., Argant, J. (Eds), Proceedings of the 9th International Cave Bear Conference, Cahiers scientifiques du Centre de Conservation et d’Etude des Collections. Muséum d’Histoire Naturelle de Lyon, Hors Série No 2, 183–188.
  • Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M.,Mariotti, A., 1997. Paleobiological Implications of the Isotopic Signatures (13C, 15N) of Fossil Mammal Collagen in ScladinaCave (Sclayn, Belgium). Quaternary Research 48, 370–380.
  • Bocherens, H., Drucker, D.G., 2013. Terrestrial Teeth and Bones. In:Elias, S.A., Mock, C.J. (Eds), Encyclopedia of Quaternary Science,Second Edition, Elsevier Inc., 304–314.
  • Bocherens, H., Fizet, M., Mariotti, A., 1994. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 213–225.
  • Bocherens, H., Fizet, M., Mariotti, A., Billiou, D., Bellon, G., Borel, J.-P., Simone, S., 1991. Biogéochimie isotopique (13C, 15N, 18O) et paléoécologie des ours pléistocènes de la Grotte d’Aldène (Cesseras, Hérault). Bulletin du Musée d’Anthropologie Préhistorique de Monaco 34, 29–49.
  • Bocherens, H., Fogel, M.L., Tuross, N., Zeder, M., 1995. Trophic structure and climatic information from isotopic signatures in a Pleistocene cave fauna of Southern England. Journal of Archaeological Science 22, 327–340. Bocherens, H., Stiller, M., Hobson, K.A., Pacher, M., Rabeder, G.,
  • Burns, J.A., Tütken, T., Hofreiter, M., 2011. Niche partitioning between two sympatric genetically distinct cave bears (Ursus spelaeus and Ursus ingressus) and brown bear (Ursus arctos) from Austria: Isotopic evidence from fossil bones. Quaternary International 245, 238–248.
  • Britton, K., Grimes, V., Dau, J., Richards, M.P., 2009. Reconstructing faunal migrations using intra tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). Journal of Archaeological Science 36, 1163–1172.
  • Bryant, J.D., Froelich, P.N., Showers, W.J., Genna, B.J., 1996a. A Tale of Two Quarries: Biologic and Taphonomic Signatures in the Oxygen Isotope Composition of Tooth Enamel Phosphate from Modern and Miocene Equids. Palaios 11, 397–408.
  • Bryant, J.D., Froelich, P.N., Showers, W.J., Genna, B.J., 1996b. Biologic and climatic signals in the oxygen isotopic composition of Eocene–Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 75–89.
  • Cerling, T.E., Sharp, Z.D., 1996. Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 173–186.
  • Chritz, K.L., Dyke, G.J., Zazzo, A., Lister, A.M., Monaghan, N.T., Sigwart, J.D., 2009. Palaeobiology of an extinct Ice Age mammal: Stable isotope and cementum analysis of giant deer teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 282, 133–144.
  • Debeljak, I., 1996. Ontogenetic development of dentition in the cave bear. Geologija 39, 13–77.
  • DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495–506.
  • Diedrich, C.G., 2012. Cave bear killers and scavengers from the last ice age of central Europe: Feeding specializations in response to the absence of mammoth steppe fauna from mountainous regions. Quaternary International 255, 59–78.
  • Fabre, M., Lécuyer, C., Brugal, J.-P., Amiot, R., Fourel, F., Martineau, F., 2011. Late Pleistocene climatic change in the French Jura (Gigny) recorded in the δ18O of phosphate from ungulate tooth enamel. Quaternary Research 75, 605–613.
  • Feranec, R.S., 2004. Isotopic evidence of saber-tooth development, growth rate, and diet from the adult canine of Smilodon fatalis from Rancho La Brea. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 303–310.
  • Feranec, R.S., Hadly, E.A., Paytan, A., 2009. Stable isotopes reveal seasonal competition for resources between late Pleistocene bison (Bison) and horse (Equus) from Rancho La Brea, southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 153–160.
  • Fricke, H.C., Clyde, W.C., O’Neil, J.R., 1998. Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonalvariations in continental climate variables. Geochimica et CosmochimicaActa 62, 1839–1850.
  • Fricke, H.C., O’Neil, J.R., 1996. Inter- and intra-tooth variation in theoxygen isotope composition of mammalian tooth enamel phosphate:implications for palaeoclimatological and palaeobiologicalresearch. Palaeogeography, Palaeoclimatology, Palaeoecology126, 91–99.
  • Gadbury, C., Todd, L., Jahren, A.H., Amundson, R., 2000. Spatial and temporal variations in the isotopic composition of bison tooth enamel from the Early Holocene Hudson-Meng Bone Bed, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 79–93.
  • Grandal-d’Anglade, A., Pérez-Rama, M., García-Vázquez, A., González-Fortes, G.M., 2019. The cave bear’s hibernation: reconstructing the physiology and behaviour of an extinct animal. Historical Biology, 31 (4), 429–441.
  • Gretzinger, J., Molak, M., Reiter, E., Pfrengle, S., Urban, C., Neukamm, J., Blant, M., Conard, N.J., Cupillard, C., Dimitrijević, V., Drucker, D.G., Hofman-Kamińska, E., Kowalczyk, R., Krajcarz, M.T., Krajcarz, M., Münzel, S.C., Peresani, M., Romandini, M., Rufi, I., Soler, J., Terlato, G., Krause, J., Bocherens, H., Schuenemann, V.J., 2019. Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. Scientific Reports 9, 10700, DOI: 10.1038/s41598-019-47073-z.
  • Herrscher, E., Goude, G., Metz, L. 2017. Longitudinal study of stable isotope compositions of maternal milk and implications for the palaeo-diet of infants. Bulletins et Mémoires de la Société d’anthropologie de Paris 29, 131–139.
  • Hillson, S., 2005. Teeth. Cambridge University Press, 373 pp.
  • Hissa, R., 1997. Physiology of the European brown bear (Ursus arctos arctos). Annales Zoologici Fennici 34, 267–287.
  • Jenkins, S.G., Partridge, S.T., Stephenson, T.R., Farley, S.D., Robbins, C.T., 2001. Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129, 336–341.
  • Jimenez, I. J., Sanz, M., Daura, J., De Gaspar, I., García, N., 2019. Ontogenetic dental patterns in Pleistocene hyenas (Crocuta crocuta Erxleben, 1777) and their palaeobiological implications. International Journal of Osteoarchaeology 29, 808–821.
  • Julien, M.-A., Bocherens, H., Burke, A., Drucker, D.G., Patou-Mathis, M., Krotova, O., Péan, S., 2012. Were European steppe bison migratory? δ18O, δ13C and Sr intra-tooth isotopic variations applied to a palaeoethological reconstruction. Quaternary International 271, 106–119.
  • Klevezal, G.A., 1996. Morphological characteristics of recording structures. In: Klevezal, G.A. (Ed.), Recording Structures of Mammals: Determination of Age and Reconstruction of Life History, A.A. Balkema, 3–23.
  • Koch, P.L., 2007. Isotopic study of the biology of modern and fossil vertebrates. In: Michener, R., Lajtha, K. (Eds), Stable Isotopes in Ecology and Environmental Science, Blackwell Publishing, 99–154.
  • Kohn, M.J., Schoeninger, M.J., Valley, J.W., 1996. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochimica Cosmochimica Acta 60, 3889–3896.
  • Kohn, M.J., Schoeninger, M.J., Valley, J.W., 1998. Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology? Chemical Geology 152, 97–112.
  • Krajcarz, M. T., 2016. What is Perspektywiczna Cave? Around the Perspektywiczna Cave Newsletter 1, 1.
  • Krajcarz, M.T., Krajcarz, M., 2014a. Summers and Winters at Wilczyce. Seasonal Changes of Paleolithic Settlement and Environment on the Basis of Seasonality and Isotope Analyses of Animal Teeth. In: Schild, R. (Ed.), Wilczyce. A Late Magdalenian Winter Hunting Camp in Southern Poland, IAE PAN, 137–148.
  • Krajcarz, M.T., Krajcarz, M., 2014b. The 200,000 year long record of stable isotopes (δ18O, δ13C) of cave bear (Ursus spelaeus) teeth from Biśnik Cave, Poland. Quaternary International 339–340, 119–130.
  • Kruuk H., 1972. The Spotted Hyena, a study of predation and social behavior. University of Chicagao Press, 335 pp.
  • Kurtén, B., 2007a. Family Hyaenidae, Hyenas. In: idem. Pleistocene Mammals of Europe, Aldine Transaction, 63–72.
  • Kurtén, B., 2007b. Family Ursidae, Bears. In: idem. Pleistocene Mammals of Europe, Aldine Transaction, 118–129.
  • Levin, N.E., Cerling, T.E., Passey, B.H., Harris, J.M. , Ehleringer, J.R., 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences of the United States of America 103, 11201–11205.
  • Lidén, K., Angerbjörn, A., 1999. Dietary change and stable isotopes: a model of growth and dormancy in cave bears. Proceedings of the Royal Society of London B 266, 1779–1783.
  • Nelson, D.E., Angerbjörn, A., Lidén, K., Turk, I., 1998. Stable isotopes and the metabolism of the European cave bear. Oecologia 116, 177–181.
  • Nelson, R.A., Folk, E.D. Jr., Pfeiffer, E.W., Craighead, J.J., Jonkel, C.J., Steiger, D.L., 1983. Behavior, biochemistry, and hibernationin black, grizzly and polar bears. In: Bears: their biologyand management, Vol. 5, A selection of papers from the Fifth International Conference on Bear Research and Management, Madison, Wisconsin, USA, February 1980 (1983). International Association for Bear Research and Management, 284–290. DOI: 10.2307/3872551.
  • Passey, B.H., Cerling, T.E., 2002. Tooth enamel mineralization in ungulates: Implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta 66, 3225–3234.
  • Pederzani, S., Britton, K., 2019. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Science Reviews 188, 77–107.
  • Reinhard, E., de Torres, T., O’Neil, J., 1996. 18O/16O rations of cave bear tooth enamel: a record of climate variability during the Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 45–59.
  • Sánchez Chillón, B., Alberdi, M.T., Leone, G., Bonadonna, F.P., Stenni, B., Longinelli, A., 1994. Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 317–328.
  • Shahack-Gross, R., Tchernov, E., Luz, B., 1999. Oxygen Isotopic Composition of Mammalian Skeletal Phosphate from the Natufian Period, Hayonim Cave, Israel: Diagenesis and Paleoclimate, Geoarchaeology – An International Journal, 14, 1–13.
  • Skrzypek, G., Wiśniewski, A., Grierson, P.F., 2011. How cold was it for Neanderthals moving to Central Europe during warm phases of the last glaciation? Quaternary Science Reviews, 30, 481–487.
  • Slaughter, B.H., Pine, R.H., Pine, N.E., 1974. Eruption of cheek teeth in Insectivora and Carnivora. Journal of Mammalogy 55, 115–125.
  • Stiller, M., Molak, M., Prost, S., Rabeder, G., Baryshnikov, G., Rosendahl, W., Münzel, S., Bocherens, H., Grandal d’Anglade, A., Hilpert, B., Germonpré, M., Stasyk, O., Pinhasi, R., Tintori, A., Rohland, N., Mohandesan, E., Ho, S.Y.W., Hofreiter, M., Knapp, M., 2014. Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quaternary International 339–340, 224–231.
  • Stiner, M., 1994. Honor among thieves: A zooarchaeological study of Neandertal ecology. Princeton University Press, 447 pp.
  • Trayler, R.B., Kohn, M.J., 2017. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods. Geochimica et Cosmochimica Acta 198, 32–47.
  • Tsutaya, T., Yoneda, M., 2015. Reconstruction of breastfeeding and weaning practices using stable isotopes and trace element analyses: a review. Yearbook of Physical Anthropology 156, 2–21.
  • Tütken, T., Furrer, H., Vennemann, T.W., 2007. Stable isotope composition of mammoth teeth from Niederweningen, Switzerland:Implications for the Late Pleistocene climate, environment, and diet. Quaternary International 164–165, 139–150.
  • Van Horn, R.C., McElhinny, T.L., Holekamp, K.E., 2003. Age estimation and dispersal in the spotted hyena (Crocuta crocuta). Journal of Mammalogy 84, 1019–1030.
  • Veitschegger, K., Kolb, C., Amson, E., Sánchez-Villagra, M.R., 2019. Longevity and life history of cave bears – a review and novel data from tooth cementum and relative emergence of permanent dentition. Historical Biology 31(4), 510–516.
  • Velivetskaya, T.A., Smirnov, N.G., Ignat’ev, A.V., Kiyashko, S.I., Ulitko, A.I., 2011. Seasonal Temperatures in the Late Pleistocene Inferred from δ18O Values in Tooth Enamel of Fossil Bison (Middle Urals, Russia). Doklady Earth Sciences 440, 1416–1418.
  • Velivetskaya, T.A., Smirnov, N.G., Kiyashko, S.I., Ignatiev, A.V., Ulitko, A.I., 2016. Resolution-enhanced stable isotope profiles within the complete tooth rows of Late Pleistocene bisons (Middle Urals,Russia) as a record of their individual development and environmental changes. Quaternary International 400, 212–216.
  • Wang Y., Kromhout E., Zhang C., Xu Y., Parker W., Deng T., Qiu Z., 2008. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 359–374.
  • Widga, C., Walker, J.D., Stockli, L.D., 2010. Middle Holocene Bison diet and mobility in the eastern Great Plains (USA) based on δ13C, δ18O, and 87Sr/86Sr analyses of tooth enamel carbonate. Quaternary Research 73, 449–463.
  • Wiedemann, F.B., Bocherens, H., Mariotti, A., von den Driesch, A., Grupe, G., 1999. Methodological and Archaeological Implications of Intra-tooth Isotopic Variations (δ13C, δ18O) in Herbivores from Ain Ghazal (Jordan, Neolithic). Journal of Archaeological Science 26, 697–704.
  • Wright, L.E., Schwarcz, H.P., 1998. Stable Carbon and Oxygen Isotopes in Human Tooth Enamel: Identifying Breastfeeding and Weaning in Prehistory. American Journal of Physical Anthropology 106, 1–18.
  • Zazzo, A., Balasse, M., Passey, B.H., Moloney, A.P., Monahan, F.J., Schmidt, O., 2010. The isotope record of short- and long-term dietary changes in sheep tooth enamel: Implications for quantitative reconstruction of paleodiets. Geochimica et Cosmochimica Acta 74, 3571–3586.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca13fd9a-467a-4880-a1ce-d0d21e2625a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.