PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applications of the LTCC ceramics in microplasma systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the current status of microplasma devices and systems made in the LTCC technology is presented. The microplasma characteristics and applications are described. We discuss the properties of the LTCC materials, that are necessary for reliable operation of the sources. This material is well known for its good reliability and durability in harsh conditions. Still, only a few examples of such microplasma sources are described. Some of them have been developed by the authors and successfully used for chemical analysis and synthesis.
Rocznik
Strony
713--724
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Iza F., et al. (2008). Microplasmas: Sources, particle kinetics, and biomedical applications. Plasma Process. Polym., 5(4), 322-344.
  • [2] Kita, J., Engelbrecht, A., Schubert, F., Gros, A., Rettig, F., Moos, R. (2015). Some practical points to consider with respect to thermal conductivity and electrical resistivity of ceramic substrates for high-temperature gas sensors. Sens. Actuator B-Chem., 213, 541-546.
  • [3] Schoenbach, K. H., Becker, K. (2016). 20 years of microplasma research: a status report. Eur. Phys. J. D, 70(2), 29.
  • [4] Chen, F. F. (2012). Introduction to plasma physics. Springer Science & Business Media.
  • [5] Bittencourt, J. A. (2013). Fundamentals of plasma physics. Springer Science & Business Media.
  • [6] Lieberman, M. A., Lichtenberg, A. J. (2005). Principles of plasma discharges and materials processing. John Wiley & Sons.
  • [7] Fridman, A. (2008). Plasma chemistry. Cambridge University Press.
  • [8] Karanassios, V. (2004). Microplasmas for chemical analysis: analytical tools or research toys? Spectrochim. Acta, Part B, 59(7), 909-928.
  • [9] Torres, J. M., Dhariwal, R. S. (1999). Electric field breakdown at micrometre separations. Nanotechnology, 10(1), 102.
  • [10] Tachibana, K. (2006). Current status of microplasma research. IEEJ Trans. Electr. Electron. Eng., 1(2), 145-155.
  • [11] Bruggeman, P., Brandenburg, R. (2013). Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. J. Phys. D, 46(46), 464001.
  • [12] Winter, J., Brandenburg, R., Weltmann, K. D. (2015). Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci. Technol., 24(6), 064001.
  • [13] Ono, R. (2016). Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. J. Phys. D: Appl. Phys., 49(8), 083001.
  • [14] Yonemori, S., Ono, R. (2014). Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence. J. Phys. D: Appl. Phys., 47(12), 125401.
  • [15] Urabe, K., Ito, Y., Tachibana, K., Ganguly, B. N. (2008). Behavior of N2+ ions in He microplasma jet at atmospheric pressure measured by laser induced fluorescence spectroscopy. Appl. Phys Express, 1(6), 066004.
  • [16] Jamroz, P., Żyrnicki, W., Pohl, P. (2012). The effect of a miniature argon flow rate on the spectra characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode. Spectrochim. Acta, Part B, 73, 26-34.
  • [17] Malecha, K., Gancarz, I., Golonka, L. J. (2009). A PDMS/LTCC bonding technique for microfluidic application. J. Micromech. Microeng., 19(10), 105016.
  • [18] Szili, E. J., Al-Bataineh, S. A., Bryant, P. M., Short, R. D., Bradley, J. W., Steele, D. A. (2011). Controlling the Spatial Distribution of Polymer Surface Treatment Using Atmospheric-Pressure Microplasma Jets. Plasma Processes Polym., 8(1), 38-50.
  • [19] Takaki, K., Shimizu, M., Mukaigawa, S., Fujiwara, T. (2004). Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal. IEEE Trans. Plasma Sci., 32(1), 32-38.
  • [20] Shimizu, K., Kuwabara, T., Blajan, M. (2012). Study on decomposition of indoor air contaminants by pulsed atmospheric microplasma. Sensors, 12(11), 14525-14536.
  • [21] Koo, I. G., Choi, M. Y., Kim, J. H., Cho, J. H., Lee, W. M. (2008). Microdischarge in porous ceramics with atmospheric pressure high temperature H2O/SO2 gas mixture and its application for hydrogen production. Jpn. J. Appl. Phys, 47(6R), 4705.
  • [22] Richmonds, C., Sankaran, R. M. (2008). Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett., 93(13), 131501.
  • [23] Mariotti, D., Ostrikov, K. (2009). Tailoring microplasma nanofabrication: from nanostructures to nanoarchitectures. J. Phys. D: Appl. Phys., 42(9), 092002.
  • [24] Mariotti, D., Švrček,V., Kim, D. G. (2007). Self-organized nanostructures on atmospheric microplasma exposed surfaces. Appl. Phys. Lett., 91(18), 183111.
  • [25] Yuan, X., Tang, J., Duan, Y. (2011). Microplasma technology and its applications in analytical chemistry. Appl. Spectrosc. Rev., 46(7), 581-605.
  • [26] Weltmann, K. D., von Woedtke, T. (2016). Plasma medicine-current state of research and medical application. Plasma Phys. Controlled Fusion, 59(1), 014031.
  • [27] Von Woedtke, T., Reuter, S., Masur, K., Weltmann, K. D. (2013). Plasmas for medicine. Phys. Rep., 530(4), 291-320.
  • [28] Kim, J. Y., Wei, Y., Li, J., Kim, S. O. (2010). 15-µm-sized single-cellular-level and cell-manipulatable microplasma jet in cancer therapies. Biosens. Bioelectron., 26(2), 555-559.
  • [29] Sakiyama, Y., Tomai, T., Miyano, M., Graves, D. B. (2009). Disinfection of E. coli by nonthermal microplasma electrolysis in normal saline solution. Appl. Phys. Lett., 94(16), 161501.
  • [30] Chasserio, N., Guillemet-Fritsch, S., Lebey, T., Dagdag, S. (2009). Ceramic substrates for high-temperature electronic integration. J. Electron. Mater., 38(1), 164-174.
  • [31] Qin, L., Shen, D., Wei, T., Tan, Q., Luo, T., Zhou, Z., Xiong, J. (2015). A wireless passive LC resonant sensor based on LTCC under high-temperature/pressure environments. Sensors, 15(7), 16729-16739.
  • [32] Qiulin, T., Hao, K., Li, Q., Jijun, X., Jun, L., Chenyang, X., Tao, L. (2015). High temperature characteristic for wireless pressure LTCC-based sensor. Microsyst. Technol., 21(1), 209-214.
  • [33] Jiang, B., Muralt, P., Maeder, T. (2015). Meso-scale ceramic hotplates – A playground for high temperature microsystems. Sens. Actuators, B, 221, 823-834.
  • [34] Vojak, B. A., et al. (2001). Multistage, monolithic ceramic microdischarge device having an active length of ~0.27 mm. Appl. Phys. Lett., 78(10), 1340-1342.
  • [35] Baker, A., Randall, C., Stewart, R., Fantazier, R., Wise, F. (2006). Fabrication of a Multilayered Low-Temperature Cofired Ceramic Micro-Plasma-Generating Device. Int. J. Appl. Ceram. Tec., 3(6), 413-418.
  • [36] Yamamoto, R. K., Gongora-Rubio, M. R., Pessoa, R. S., Cunha, M. R., Maciel, H. S. (2009). Mixed LTCC and LTTT technology for microplasma generator fabrication. J. Microelectron. Electron. Packag., 6(2), 101-107.
  • [37] Taff, J., Yates, M., Lee, C., Shawver, S., Browning, J., Plumlee, D. (2013). Fabrication of an Inductively Coupled Plasma Antenna in Low Temperature Co-Fired Ceramic. Int. J. Appl. Ceram. Technol., 10(2), 321-329.
  • [38] Macioszczyk, J., Lenartowicz, M., Malecha, K., Golonka, L. J. (2016). Design and Fabrication of Ceramic Microsystem Utilizing Glow Discharge for Analysis of Liquid Mixtures. Proc. of CICMT 2016, Denver, USA, 000080-000084.
  • [39] Macioszczyk, J., Matusiak, T., Jamroz, P., Golonka, L. (2017). Ceramic atmospheric pressure micro glow discharge device with evaporating liquid flowing cathode for analytical purposes. Electronics Technology (ISSE), Proc. of ISSE 2017, Sofia, Bulgaria.
  • [40] Macioszczyk, J., Malecha, K., Roguszczak, H., Patela, S., Golonka, L. J. (2015). Low temperature co-fired ceramics plasma generator for atmospheric pressure gas spectroscopy. Sensors and Actuators A: Physical, 223, 174-179.
  • [41] Macioszczyk, J., Olszewski, P., Golonka, L., Jamroz, P. (2017). Portable reactor with LTCC electrodes for production of plasma activated water. Proc. of IMAPS 2017, Warsaw, Poland.
  • [42] Macioszczyk, J., Radka, Ż., Malecha, K., Świderski, K., Jamróz, P., Stafiniak, A., Golonka L. (2018). An atmospheric pressure plasma jet made in LTCC technology – preliminary results. Portable reactor with LTCC electrodes for production of plasma activated water. Proc. of CICMT 2018, Aveiro, Portugal. Flash memory.
  • [43] Fischer, M., Stubenrauch, M., Naber, A., Gutzeit, N., Klett, M., Singh, S., Muller, J. (2017). LTCC-based micro plasma source for the selective treatment of cell cultures. Proc. of EMPC 2017, Warsaw, Poland.
Uwagi
EN
The authors wish to thank National Science Centre (grant no. 2016/21/N/ST7/01618) for the financial support.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca13974d-7679-4f72-99c1-1d23305df8d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.