PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Water-Jet on Micro-Formed Parts Process via Nano-Indentation and SEM Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the experimental study of cavitation water jet impact on microforming, a single round hole micro-die was used in this paper. The effect of different process parameters on the performance of 304 stainless steel foil was examined, which involves the nanometer hardness, and elastic modulus. The nano-indentation tester was used to test the nano-hardness of the formed part, and the performance of the workpiece before and after the impact was analyzed. The nano hardness and elastic modulus increased significantly with an increase in the incident pressure. When the incident pressure was 20 MPa and the impact time of 5 min, the hardness increased by at least 122%, and the elastic modulus increased by at least 76%. After the cavitation water jet shocked the metallic foil of the SEM analysis and the results indicated that, as the incident pressure increases, the surface morphology of the formed part changes from approximately spherical to spherical, and the spherical roundness increases. In addition, there were different degrees of defects at the bottom of the formed part, and as the incident pressure increased, the bottom defects became more and more obvious, from micro-cracks to micro-layer cracks.
Twórcy
  • Faculty of Engineering, Welding & Fabrication Department, Tamale Technical University, Tamale, 00233, Ghana
autor
  • Faculty of Engineering, Mechanical Engineering Department, Tamale Technical University, Tamale, 00233, Ghana
  • Faculty of Engineering, Mechanical Engineering Department, Hila Liman Technical University, Wa, 00233, Ghana
  • Faculty of Engineering, Mechanical Engineering Department, Tamale Technical University, Tamale, 00233, Ghana
  • Faculty of Engineering, Mechanical Engineering Department, Tamale Technical University, Tamale, 00233, Ghana
  • Faculty of Engineering, Welding & Fabrication Department, Tamale Technical University, Tamale, 00233, Ghana
Bibliografia
  • 1. Szala M., Walczak M., Hejwowski T. Factors influencing cavitation erosion of NiCrSiB hardfacings deposited by oxy-acetylene powder welding on grey cast iron. Advances in Science and Technology. Research Journal, 2021; 15.
  • 2. Soyama H., Park J., Saka M. Use of cavitating jet for introducing compressive residual stress. Journal of manufacturing science and engineering, 2000; 122: 83–89.
  • 3. Adem Musliu A.M., Bekim M., Naim B. Analysis of Research of Heavy Metals On Ground In “Kosova-A” Thermal Power Plant. International Journal of Applied Physics, 2022; 7: 24–35.
  • 4. Huang Y.C., Hammitt F., Yang W. Hydrodynamic phenomena during high-speed collision between liquid droplet and rigid plane, 1973.
  • 5. Tong R., Schiffers W.P., Shaw S.J., Blake J.R., Emmony D. The role of ‘splashing’in the collapse of a laser-generated cavity near a rigid boundary. Journal of Fluid M echanics, 1999; 380: 339–361.
  • 6. Wang P., Shi D., Cui X., Su B., Li G., He D. Study on the physical mechanism of water layer on the morphological evolution of transient-pulse high-speed water jet. Ocean Engineering, 2023; 267: 113238.
  • 7. Quaisie J.K., Yun W., Zhenying X., Chao Y., Li F., Baidoo P., et al. Experimental Study on Water-Jet Shock Microforming Process Using Different Incident Pressures. Advances in Materials Science and Engineering, 2020.
  • 8. Matuszak J. Effect of Ceramic Brush Treatment on the Surface Quality and Edge Condition of Aluminium Alloy after Abrasive Waterjet Machining. Advances in Science and Technology Research Journal, 2021; 15.
  • 9. Cheng F., Ji W., Qian C., Xu J. Cavitation bubbles dynamics and cavitation erosion in water jet. Results in Physics, 2018; 9: 1585–1593.
  • 10. Hao C., Cheng Y., Wang L., Liu H., Shang Z. A novel technology for enhancing coalbed methane extraction: Hydraulic cavitating assisted fracturing. Journal of Natural Gas Science and Engineering, 2019; 72: 103040.
  • 11. Xiang M., Cui J., Yang Y., Liao Y., Wang K., Chen Y., et al. Shock responses of nanoporous aluminum by molecular dynamics simulations. International Journal of Plasticity, 2017; 97: 24–45.
  • 12. Errandonea D., Garg A.B. Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Progress in Materials Science, 2018; 97: 123–169.
  • 13. Brujan E.-A. Shock wave emission and cavitation bubble dynamics by femtosecond optical break-down in polymer solutions. Ultrasonics Sonochemistry, 2019; 58: 104694.
  • 14. Fuentes G.G. Chapter 20 – Surface Engineering and Micro-manufacturing,” in Micromanufacturing Engineering and Technology (Second Edition), Y. Qin, Ed., ed Boston: William Andrew Publishing, 2015; 459–486.
  • 15. Sato K., Sugimoto Y., Ohjimi S. Pressure-wave formation and collapses of cavitation clouds impinging on solid wall in a submerged water jet, 2009.
  • 16. Soyama H. Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear, 2013; 297: 895–902.
  • 17. Sharifikolouei E., Sarac B., Micoulet A., Mager R., Watari-Alvarez M., Hadjixenophontos E., et al. Improvement of hardness in Ti-stabilized austenitic stainless steel. Materials & Design, 2022; 223: 111242.
  • 18. Sonmez F.O., Demir A. Analytical relations between hardness and strain for cold formed parts,” Journal of materials processing technology, 2007; 186: 163–173.
  • 19. Szala M., Walczak M., Pasierbiewicz K., Kamiński M. Cavitation erosion and sliding wear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate. Coatings, 2019; 9: 340.
  • 20. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992; 7: 1564–1583.
  • 21. Cheng Y.-T., Cheng C.-M. Scaling, dimensional analysis, and indentation measurements. Materials Science and Engineering: R: Reports, 2004; 44: 91–149.
  • 22. Liu H., Sun X., Shen Z., Li L., Sha C., Ma Y., et al. Experimental and Numerical Simulation Investigation on Laser Flexible Shock Micro-Bulging, 2017; 7.
  • 23. Tromas C., Stinville J.C., Templier C., Villechaise P. Hardness and elastic modulus gradients in plasma-nitrided 316L polycrystalline stainless steel investigated by nanoindentation tomography. Acta Materialia, 2012; 60: 1965–1973.
  • 24. Czapczyk K., Siwak P., Legutko S. Study of the effect of the electroless ni-p coating thickness applied on aw-7075 aluminium alloy on its mechanical properties. Advances in Science and Technology. Research Journal, 2018; 12: 291–297.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca135d5b-10f3-46a1-ad26-eaae7e407820
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.