PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kinetic Model for the Decomposition Rate of the Binder in a Foundry Sand Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate kinetic parameters are vital for quantifying the effect of binder decomposition on the complex phenomena occurring during the casting process. Commercial casting simulation tools often use simplified kinetic parameters that do not comprise the complex multiple reactions and their effect on gas generation in the sand core. The present work uses experimental thermal analysis techniques such as Thermogravimetry (TG) and Differential thermal analysis (DTA) to determine the kinetic parameters via approximating the entire reaction during the decomposition by multiple first-order apparent reactions. The TG and DTA results reveal a multi-stage and exothermic decomposition process in the binder degradation. The pressure build-up in cores/molds when using the obtained multi-reaction kinetic model is compared with the earlier approach of using an average model. The results indicate that pressure in the mold/core with the multi-reaction approach is estimated to be significantly higher. These results underscore the importance of precise kinetic parameters for simulating binder decomposition in casting processes.
Słowa kluczowe
Rocznik
Strony
43--49
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • Jönköping University, Sweden
  • Jönköping University, Sweden
autor
  • Jönköping University, Sweden
  • Jönköping University, Sweden
Bibliografia
  • [1] Campbell, J. (2011). Molds and cores. Complete Casting Handbook. 1, 155-186. https://doi.org/10.1016/b978-1 85617-809-9.10004-0.
  • [2] Campbell, J., Svidro, J.T. & Svidro, J. (2017). Molding and casting processes. Cast Iron Science and Technology. 1, 189 206. DOI: 10.31399/asm.hb.v01a.a0006297.
  • [3] Diószegi, A., Elmquist, L., Orlenius, J. & Dugic, I. (2009). Defect formation of gray iron casting. Intional Journal of Metalcasting. 3(4), 49-58, DOI: 10.1007/BF03355458.
  • [4] Bobrowski, A., Holtzer, M., Zymankowska-Kumon, S. & Dańko, R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX group. Archives of Metallurgy and Materials. 60(1), 341-344. DOI: 10.1515/amm-2015-0056.
  • [5] Grabowska, B., Żymankowska-Kumon, S., Cukrowicz, S., Kaczmarska, K., Bobrowski, A. & Tyliszczak, B. (2019). Thermoanalytical tests (TG–DTG–DSC, Py-GC/MS) of foundry binders on the example of polymer composition of poly(acrylic acid)-sodium carboxymethylcellulose. Journal of Thermal Analysis and Calorimetry. 138(6), 4427-4436. DOI: 10.1007/s10973-019-08883-5.
  • [6] Kmita, A., Benko, A., Roczniak, A. & Holtzer, M. (2020). Evaluation of pyrolysis and combustion products from foundry binders: potential hazards in metal casting. Journal of Thermal Analysis & Calorimetgry. 140(5), 2347-2356. DOI: 10.1007/s10973-019-09031-9. [7] Holtzer, M., Kmita, A., Roczniak, A., Benko, A. (2018). Thermal stability of a resin binder used in moulding sand technology. 73rd World Foundry Congr. "Creative Foundry", WFC 2018 - Proc. (pp. 131-132).
  • [8] Wan, P., Zhou, J., Li, Y., Yin, Y., Peng, X., Ji, X. & Shen, X. (2021). Kinetic analysis of resin binder for casting in combustion decomposition process. Journal of Thermal Analysis and Calorimetry. 147, 6323-6336. DOI: 10.1007/s10973-021-10902-3.
  • [9] Wewerka, E.M., Walters, K.L. & Moore, R.H. (1969). Differential thermal analysis of furfuryl alcohol resin binders. Carbon. 7(1), 129-141. DOI: 10.1016/0008-6223(69)90012 8.
  • [10] Nastac, L., Jia, S., Nastac, M.N. & Wood, R. (2016). Numerical modeling of the gas evolution in furan binder-silica sand mold castings. International Journal of Cast Metals Research. 29(4), 194-201. DOI: 10.1080/13640461.2015.1125983.
  • [11] Zych, J., Mocek, J., Snopkiewicz, T. & Jamrozowicz, Ł. (2015). Thermal conductivity of moulding sand with chemical binders, attempts of its increasing. Archives of Metallurgy and Materials. 60(1), 351-357. DOI: 10.1515/amm-2015-0058.
  • [12] Zych, J., Mocek, J. & Kaźnica, N. (2018). Kinetics of gases emission from surface layers of sand moulds. Archives of Foundry Engineering. 18(1), 222-226. DOI: 10.24425/118841.
  • [13] Perondi, D., Broetto, C.C., Dettmer, A., Wenzel, B.M. & Godinho, M. (2012). Thermal decomposition of polymeric resin [(C29H 24N206)n]: Kinetic parameters and mechanisms. Polymer Degradation and Stability. 97(11), 2110-2117. DOI: 10.1016/j.polymdegradstab.2012.08.022.
  • [14] Jomaa, G., Goblet, P., Coquelet, C. & Morlot, V. (2015). Kinetic modeling of polyurethane pyrolysis using non isothermal thermogravimetric analysis. Thermochimica Acta. 612, 10-18. DOI: 10.1016/j.tca.2015.05.009.
  • [15] Kmita, A., Knauer, W., Holtzer, M., Hodor, K., Piwowarski, G., Roczniak, A. & Górecki, K. (2019). The decomposition process and kinetic analysis of commercial binder based on phenol-formaldehyde resin, using in metal casting. Applied Thermal Engineering. 156, 263-275. DOI: 10.1016/j.applthermaleng.2019.03.093.
  • [16] Ozawa, T. (1976). A modified method for kinetic analysis of thermoanalytical data. Journal of Thermal Analysis. 9(3), 369-373. DOI: 10.1007/BF01909401.
  • [17] Coats, A.W. & Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature. https://doi.org/10.1038/201068a0. 201, 68-69.
  • [18] Gröbler, A. & Kada, T. (1973). Kinetic studies of multi-step thermal degradations of copolymers or polymer mixtures. Journal of thermal analysis. 5, 407-414. DOI: 10.1007/BF01950231.
  • [19] Takamura, M. (2006). Application of Highly Wear-Resistant Carbon as a Material for Printing Types on Impact Printers. Waseda University.
  • [20] Fitzer, E., Schaefer, W. & Yamada, S. (1969). The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin. Carbon. 7(6), 643-648. DOI: 10.1016/0008 6223(69)90518-1.
  • [21] Fitzer, E. & Schäfer, W. (1970). The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon. 8(3), 353-364. DOI: 10.1016/0008-6223(70)90075 8.
  • [22] Shinada, Y., Ota, H. & Ueda, Y. (1985). Gaz thermiquement décomposés à partir de liants organiques. Imono. 57(1), 17-22.
  • [23] Freeman E.S. & Carroll, B. (1958). The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. The Journal of Physical Chemistry. 62(4), 394-397. DOI:10.1021/j150562a003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca133b29-0d5a-4645-a37a-faf7bddded2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.