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Abstract—This paper presents a methodology to automate
functional Software-Based Self-Test program development. We
rely on the previously published research on modeling processors
using subclass of acyclic directed graphs called High-Level
Decision Diagrams (HLDD). The HLDD model of the processor
gets generated from its Instruction Set Architecture. The HLDD
model is then used together with beforehand prepared assembly
program templates in the generation of the complete self-test
program. The research presented in this paper includes examples
of test generation for the 32-bit SPARCv8 microprocessor Leon
3. The experimental results demonstrate that automatically
generated SBST program obtains comparable to the state-of the
art fault coverage data.

Index Terms—microprocessor, software-based self-test (SBST),
automatic test program generation, high-level decision diagrams
(HLDD) synthesis.

I. INTRODUCTION

ADVANCES of modern technology in manufacturing and

design of microprocessors are continuously increasing

the difficulty of digital circuit test [1]. Therefore, testing

of constantly scaling complex digital systems like micropro-

cessors, has been a challenge for decades. Software-based

self-test method has emerged, and became a very promising

competitor to the widely used, but slow, intruisive structural

test [2] [3], and effective, but very expensive functional test

[1]. The core idea of SBST approach is to use the resources

of microprocessor to test itself, by running test programs. The

nature of this method implies such features as nonintruisive-

ness, low cost and compatibility with at-speed and in-field

testing [4]. This method was accepted by industry [5], and

is complementing functional and structural methods within

manufacturing process.

Furthermore, interest for this method was growing in frames

of in-field test for processor-centric systems in safety-critical

applications. Since, functional and structural test methods are

not suitable for in-field test, SBST becomes very attractive

solution [6] [7]. The academia was motivated to put more

effort into studying SBST for in-field test, after publication

of IEC 61508 for industrial safety systems, ISO 26262 for

automotive applications, and release of DO0254.

Concurrently, big interest is gathered around the automation

of SBST approach, since the complexity of manual test pro-

gram generation can be inexcusably high. Automated SBST
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[7]–[9] can reduce the test development cost, and thereafter

price of a product.

SBST approaches can be divided into two major groups -

structural and functional. Structural approaches, such as [10]–

[15], are based on test generation using information from lower

level of design (gate- or RTL-level description) of processor

under test. Functional, in its turn, is using instruction set

architecture (ISA) information of the processor under test.

Since in most cases structural information of commercial

products is intellectual property held under NDA, the solution

based on functional SBST is exclusive for in-system or in-filed

test.

One of the first methods among functional SBST proved

to be efficient, was proposed by Shen And Abraham [16].

Framework Vertis, capable of pseudo-random test sequence

generation based on ISA information, has been proposed.

Similar solution - FRITS (Functional Random Instruction

Testing at Speed) [17] is based on test program generation

on random instruction sequences with pseudo-random data.

It suits well for wafer test, due to it’s cache-resident nature.

Alternative cache-resident method for production testing [5]

using random generation mechanism proves, that high cost

functional testers can be replaced by this SBST approach,

without significant loss in fault coverage. Alternative approach,

based on so-called evolutionary algorithm, was proposed by

Corno et al. [18]. Test program is being composed of the

most effective code snippets (in a question of SAF coverage),

which were distinguished by constant reevaluation. Due to it’s

reevaluation-centric nature, this method is not capable of in-

field test generation, due to lack of structural information.

Later research concentrates on test approaches for specific

processor parts like pipeline, branch prediction mechanism

[19] or caches [20]. Gizopoulos et al. in [21] are proposing a

method, which can enhance SBST program in order to bring

more coverage to pipeline logic and also memory addressing (

12% for miniMIPS and OpenRISC1200 processors). Further

approach for testing the pipeline was made by Bernardi et al.

[22]. The proposed strategy involves the activation of faults

related to the data hazards and register forwarding logic in

processor core, and later research concentrates on decode stage

of the pipeline [6].

Nevertheless, none of the state-of-the-art methods have so

far tried to develop well formalized high-level (e.g. behavioral

level) fault models for coping with hard-to-test faults and

fault masking problems at higher levels with ultimate goal

to improve test quality and to achieve compact test programs.

Additionally, coverage of wide specter of fault classes is left

unmeasured, due to lack of methods for simulation and lack

of theoretical basis for identification.
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Fig. 1. General concept of SBST generation tool

Our previous work in SBST field is focused on adapt-

ing methodology of High-Level Decision Diagrams (HLDD)

for modeling of microprocessors and faults [23]. In paper

[23], we introduced a new concept for generating tests for

microprocessors. The proposed approach considers program

generation using MUTs modeling at behavioral level derived

from ISA. HLDD model sets are synthesized from the ISA,

hence, considered as a behavioral level model. The instruction

list of MP is converted into a network of HLDD graphs where

each graph represents a sub-circuit. Hierarchical approach

is used for test generation: the control functions are tested

exhaustively (by conformity test), but the data operands for

testing the data path are generated by traditional gate-level

ATPG (scanning test). Our latest work [24] adds new fault

modeling idea for high-level faults, where experimental results

obtained by formal generation of test program for the Parwan

[25], [26] microprocessor are presented.

In this paper we develop our previous concepts into the

tool, which automatically generates test programs for micro-

processors. For that purpose we have proposed an algorithm

of instruction set analysis. Generalizing the known method

of BDD synthesis based on Shannon expansion of Boolean

functions allows high level expansion of predicate expressions.

The general concept of the tool is shown in Figure 1. The

Tool consists of three modules: HLDD synthesizer, test vector

generator, and SBST generator - synthesizer for converting

test vectors into test-programs using beforehand prepared test

code templates. The capabilities of the tool are demonstrated

on two microprocessors - on the Parwan 8-bit microprocessor,

and on Leon 3 32-bit microprocessor.

The paper is organized as follows: Section II presents the ba-

sis of HLDD synthesis procedure. Section III is demonstrating

the HLDD synthesis functionality of proposed tool on example

of Leon 3 microprocessor. Section IV is dedicated to fault

modeling using HLDD diagrams. Section V gives an overview

of test program generation functionality, and experimental

results. The results, published in this paper are confirming the

applicability of approaches presented in previous works [23]

[24].

II. HIGH-LEVEL DECISION DIAGRAM SYNTHESIS

In [27], High-Level Decision Diagrams (HLDD) were intro-

duced, and a method was proposed for synthesis of HLDDs

from Data Flow Diagrams (DFD). As the first step of syn-

thesis, the DFD was transformed by symbolic execution into

a Structural Table of Automaton (STA) [28]. In case of mi-

croprocessors when their behavior is given by the instruction

set, such STA can be generated directly without symbolic

execution of the model.

Consider an example of a fragment of a digital system is

shown in Table I.

TABLE I
DESCRIPTION OF AN AUTOMATION

Instruction Control constraints
Data assignment statements

Ik x1 x2 x3

I1 1 3 0 y1 = F1(X)

I2 1 2 y1 = F2(X), y2 = F3(X)

I3 3 2 y1 = F4(X)

I4 4 1 y2 = F5(X)

- - -

Each row in Table I represents a state transfer in the

automaton. In case of the microprocessor represented at high-

level by its set of instructions, we can represent by each row

the functionality of an instruction as follows.

The left-most cell in each row denotes the name (or the

number) of the instruction Ik, the cells of the subtable Control

constraints represent the code of the the related instruction

word Ik split into the codes (x1, x2, x3) of different subfields

of the instruction format, and the cells of the subtable Data

assignment statement represent the functional activities yk =
Fk(Xk) of the related instruction where yk denotes the output

functional variable of the related functional block (e.g. the

output register of ALU), and Xk represents the data variables

involved as arguments in the data manipulation operation Fk.

For all the left-hand side variables yk in Table I we create

HLDDs which will describe the behavior of these variables

during execution of the related instructions. We assume that

the variables y1 and y2 represent the results of functions F (X).
Consider the data in Table 1 as a set of tuples N =

{Nk}, Nk = (Ck, Sk) where Ci is a set of logical constraints

given for the instruction Ik in the subtable control constraints,

and Sk is a set of assignment statements. Each statement

s ∈ Sk (denoted by shortly by yk,s = Fk,s) is an algebraic

expression, which will be fulfilled if the set of constraints Ci

is satisfied. By collecting all the statements s from N for a

left-hand variable y we can represent the behavior of y as

y =
∨

CiFi,s, (1)

where the constraints Ci represent conjunctions of predi-

cates weighted by the respective expression Fi,s.

As an example, according to the formula 1 the Table I can

be represented now as the two predicate formulas:

y1 = (x1 = 1)(x2 = 3)(x3 = 0)F1(X)∨
(x1 = 1)(x2 = 2)F2(X) ∨ (x1 = 3)(x3 = 2)F4(X)

y2 = (x1 = 1)(x2 = 2)F3(X) ∨ (x2 = 4)(x3 = 1)F5(X)

From these predicate formulas, the HLDDs for the variables

y1 and y2 can be derived in a similar way as BDDs are derived

by using Shannon factorization [29] for Boolean functions.

The only difference is that instead of Boolean factorization we

will use multi-valued factorization, depending on the possible

number of values of the constraint variables xk. The HLDDs

created by factorization for y1 and y2 are depicted in Fig 2.
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Fig. 2. HLDDs created by factorization of formulas for y1 and y2

Using the model of HLDDs we can simulate the instructions

by tracing the graphs according to the values of the instruction

variables (x1, x2, x3). If a terminal node will be reached then

the value of the graph variable y is updated by calculation of

the value of the expression in the related terminal node. If no

terminal node will be reached then the value of graph variable

y will not be updated.

III. ISA BASED HLDD SYNTHESIZER

The methodology for generation of High-Level decision

diagrams from instruction set architecture presented in pre-

vious section, is used by the proposed tool. The instruction

set information is primary input data for HLDD synthesis. In

order to process ISA automatically, it should be represented in

a machine readable way. Usually the information about ISA

is formatted and composed differently, making the universal

parsing process nearly impossible.

First, we suggest to bring the ISA description to com-

mon ground. Thus, in this paper we outline two formats

(CSV, XML) to generalize the description of Leon 3 ISA.

In case of CSV format, each instruction field name, width

and value must be provided using such syntax: %name% =
%width%′b%value%. In case of XML format, each field

must have own tag, where name, width and value are pro-

vided as follows: < %name% = %width%′b%value% ><
%name% >. The proposed HLDD Synthesizer tool is capable

to read both formats: CSV table and XML.

As a case study, microprocessor Leon 3 was used. This

processor was chosen to represent the complexity of modern

processor cores, which is suitable to show the scalability of

proposed approach. Table II shows the complexity difference

between two processors used in case study of this paper. An

integer unit module of Leon 3, as a core component, is used

as an unit under test.

TABLE II
PARWAN AND LEON 3 IU COMPARISON

PARWAN LEON 3 Integer Unit
Bit depth 8 32

Instructions 16 46

Architecture Custom SPARCv8

Gates 1480 15161

Leon 3 is a microprocessor with SPARCv8 architecture

[30]. SPARCv8 instructions can be divided into four groups:

memory, control, ALU and miscellaneous. Each instruction

is aligned to a specific format. SPARCv8 architecture has 6

different formats for instruction set listed in Table III.

TABLE III
SPARCV8 INSTRUCTION FORMATS

1 op disp30

2 op rd op imm22

3 op a cond op2 disp22

4 op rd op3 rs1 i=0 asi rs2

5 op rd op3 rs1 i=1 imm13

6 op rd op3 rs1 opf rs2

The fields from instruction format table can be divided in

two types - operational fields (op, op2, op3, i, a, asi, cond, opf )

and register related fields (rs1, rs2, rd, imm). This information

must be handled differently, in order to build a proper HLDD

diagram. Operational code fields must be marked differently

from register fields.

SPARCv8 
Architecture 

Manual

CSVop=2'b10; %rd; op3=6'b000001; %rs1; i=1'b0; asi=8'b00000000; %rs2; {rd = rs1 and rs2}op=2'b10; %rd; op3=6'b000001; %rs1; i=1'b0; asi=8'b00000000; %rs2; 

a

b

Fig. 3. CSV and XML representation of AND instruction

An example of AND instruction of SPARCv8 architecture

is provided in Figure 3. This figure represents the process

of modifying the instruction description from architecture

reference manual into machine readable format. In the given

example AND instruction description (Figure 3.a) is cut from

SPARCv8 architecture manual. By it’s format AND instruction

belongs to the ALU instruction group. Additional information

about instruction fields is also taken from manual - instruction

word consists of four operational fields - op, op3, i and asi, and

three register fields - rd, rs1 and rs2 (Table III, line 4). Based

on this information, an entry containing instruction field names

and their length, can be added to the CSV file (Figure 3.b). op,
op3, i and asi fields have constant values, but rd, rs1 and rs2
fields are dynamic, since holding information about register

index. Dynamic nature of register index is represented with

symbol %. Complementary information should be provided as

parameters separately, in order to sort dynamic fields by their

specification - if it is a source register, destination register or

immediate value.

a

Fig. 4. Part of SPARCv8 ALU instructions

In case of AND instruction, rd is a destination register index

and rs1, rs2 are source register indexes. Additionally, CSV

entry should contain the description of operation (Figure 4.a),



for the AND operation in hand is rd = rs1 and rs2. Com-

plementary, but important information about microprocessor

architecture should be also added as separate parameters. Such

is the data about register amount and their width, needed at

the stages of HLDD generation and test synthesis.

Correctly composed CSV with complementary files is hold-

ing needed data to build HLDD diagram, representing the

behavior of the system (or it’s part) under test. As an example,

a small subset of SPARCv8 instruction set, representing ALU

instructions, is shown in Figure 4. The HLDD graph, synthe-

sized from SPARCv8 ALU-type instruction list is shown in

Figure 5. In case of AND instruction, the destination register,

represented by instruction field rd, becomes the output of the

graph. Then, path of consequent nodes from output to the leaf

of graph is build from operational fields of AND instruction.

Functional description of AND instruction becomes the leaf.

Such way of modeling allows to store the behavior of the

system as follows: the result of operation rs1 and rs2 will be

stored to rd, if operational instructions fields op, op3, i and

asi are holding specific values. As a consequence, each node

represents an element of the control part, and leafs represent

data path of the modeled system.

HLDD 
models the 

processor on 
behavioral 

level  

Data 
Path 

Each HLDD node 
represents a 

functional unit of the 
Microprocessor Control Unit 

Fig. 5. HLDD graph synthesised from SPARCv8 instructions

IV. ISA BASED HIGH-LEVEL FAULT MODELING

In the ISA based HLDD model, the nodes of the decision

diagram (DD) are classified into two groups: internal nodes,

and terminal nodes. Internal nodes represent the control func-

tions of the system, and terminal nodes represent the data path

functions of the system.

The instruction words of microprocessors are usually split

into several fields. This corresponds to partitioning of the

instruction variable into concatenation of the field variables

e.g. as I = OP.A1.A2, where I is the instruction variable, OP
is the operation code, whereas A1, and A2 denote register

addresses of the first and second operands, respectively. In the

HLDD model, to each of these field variables related internal

nodes correspond. On the other hand, each of these nodes

represent sub-circuits which are responsible for addressing the

operands and controlling the operation related to the value of

OP. The nodes OP, A1, and A2 represent a path in the HLDD,

which will be activated if the instruction I is called. The path

terminates in the terminal node of the HLDD labelled by a

functional expression to be processed in the data path of the

system if the instruction I is called.

Each path in a DD describes the behavior of the system in

a specific mode of operation. The faults having effect on this

behavior are associated with nodes along the activated path.

In case of a control fault, the path activated by instruction

I, will be corrupted, and the effect of the fault will cause

incorrect leaving the path in the faulty node. In this case, a

wrong terminal node will be reached instead of the terminal

node which should have been reached at instruction I. In case

of the data fault, the functional expression in the terminal node

of the activated path will be corrupted.

As the fault universe to represent all possible control

malfunctions in a system, we assume any corruption in the

behavior of non-terminal nodes in HLDDs, expressed in the

following ways [31]:

1) output edge of a node is broken;

2) output edge of a node is constantly activated;

3) instead of the activated edge, another edge or a set of

edges are simultaneously erroneously activated.

The practical meaning of this fault universe stands in

application of the idea to test exhaustively the behavior of each

non-terminal node at all possible values of the node variable.

The fault universe of control faults can be expanded with

the universe of data path faults related to terminal nodes of

HLDDs to get the full fault universe of the system under test.

To do this, in each terminal node, and for each expected value

v of the functional expression of the node, we introduce a

dummy output edge into a new dummy terminal node labelled

with the value v as a constant. In such an extended HLDD,

all the node related faults can be activated in a uniform way.

Several optimizations of the described exhaustive fault

universe can be undertaken, based on either transforming

exhaustive test into pseudo-exhaustive one, or transforming

the functional test into the structural one.
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1 1
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n3n2
n1
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Fig. 6. Transformation of HLDDs to reduce the complexity of model

In Figure 6, it is shown how the exhaustive test concept can

be substituted by the pseudo-exhaustive approach to reduce the

control fault universe of the system. Two possible HLDDs are

presented for representing the behavior of the same subsystem

with output register R. The subsystem is controlled by a set of

n instructions. The instruction variable I can be represented

as a concatenation of the field variables in two ways: I
= OP.A1.A2, or I = OP1.OP2.OP3.A1.A2, resulting in two

different HLDDs.



Instead of testing exhaustively the node OP in the HLDD

(Figure 6a) for all n values of the instruction subfield variable

OP, we may test separately and exhaustively the component

variables OP1, OP2, and OP3 in the functionally equivalent

HLDD (Figure 6b), which corresponds to traditional pseudo-

exhaustive test [31]. The complexity of the test generation task,

and the length of the resulting test can be using the HLDD

in Figure 6b considerably reduced due to the reduction of

the number of output edges of internal nodes in the graph,

compared to the HLDD in Figure 6a:

n1 + n2 + n3 << n = n1 × n2 × n3.

On the other hand, the exhaustive test of the functions Fk
in terminal nodes, can be replaced either by also pseudo-

exhaustive tests [32], or by structurally generated test pat-

terns using any traditional low-level ATPG (if the related

implementation details of the system are given). In the latter

case, a combined use of hierarchical test generation may be

used, exploiting both, ISA-based HLDDs, and structurally

synthesized BDDs [33].

To organize test generation for each HLDD node, using

HLDD-based fault universe, two steps are to be processed:

activation of the node under test, and sensitizing the faults of

the activated node.

To activate internal node m under test needs assignment of

proper values to the node variables in the HLDD, so that the

following paths were activated: (2) a path from the root node

to m, and (3) a subset of non-overlapping paths from all output

edges of the node m to a subset of terminal nodes MT (m).
To activate a terminal node m under test needs to activate only

a single path from the root node to m. Sensitizing the faults

of the activated internal node m needs to solve the following

equations as constraints when testing the node m [2]:

∀mT ∈ MT (m) : [f(mT ) �= Ω], (2)

∀mi,mj ∈ MT (m), i �= j : ∀k[fk(mi) < (fk(mi) ∗ fk(mj))]
(3)

where Ω = ZERO (or ONE), and the symbol * stands

for logic OR (or logic AND), depending on the technology

implemented in MP [34], [35]. Here, ZERO denotes a binary

vector (000), and, similarly, ONE stands for (111). The index

k refers to the bit number of the data words. Satisfaction

of the constraints (2) and (3) guarantees that the expected

and erroneous test responses will be distinguished at any

corruption of the activated HLDD node m under test due to a

fault in the sub-system, represented by the node.

The described high-level fault model defined for HLDDs,

together with the node activation concept, can be regarded

as a generalization of the classical gate-level stuck-at fault

(SAF) model for high-level representations of digital systems.

Both represent a node based fault model in decision diagrams

[33]. The only differences are in the number of output edges

of the nodes, and in the number of terminal nodes in the

decision diagrams. In both cases, the node variables are tested

exhaustively: two test patterns are needed for the Boolean

variables labelling the nodes in BDDs whereas the number

of patterns needed for HLDD nodes is equal to the number of

output edges of the node.

The described concept of satisfaction of the constraints (2)

and (3) is similar to the extended conditional SAF model [36]–

[38] developed for Boolean level test generation of physical

defects inside complex gates in digital circuits. In the latter

case, additional conditions map the impact of defects into SAF

at related BDD nodes, whereas in case of the ISA based HLDD

model, the constraints (2) and (3) specify the reasons of the

corruptions in behaviors of nodes under test.

V. SBST GENERATION WITH HLDD MODEL

The targets of test generation for a microprocessor using the

HLDD model are not the instructions each of them taken as

a whole as in traditional cases. Instead of that, the targets are

smaller functional entities represented by the nodes of HLDDs.

The terminal nodes represent selected data path functional

entities (sub-circuits of ALU), and the nonterminal nodes

represent the selected control functional entities related to the

subfields of instruction words. Since the HLDD nodes as test

targets represent smaller functional units than the instructions

as a whole, it makes possible to use pseudo-exhaustive testing

of the processor control part and to cope in this way better with

the complexity of the test problem. Instead of full exhaustive

testing of all operation codes we test (pseudo)exhaustively its

independent parts, guided by the HLDD internal nodes. For

testing terminal nodes we use test data generated for ALU at

the gate level.

From above, two approaches of testing, different for ter-

minal and nonterminal nodes, result: conformity test for the

control part (internal HLDD nodes), and scanning test for data

path (terminal HLDD nodes) [39].

A. Conformity tests

The test program is synthesized on the high-level directly

from the HLDD model, and the data for the test program are

generated to satisfy the constraints (2) and (3).

Algorithm 1. Conformity test for the control part (test for

a nonterminal node m).

1) Control data (instruction code) generation: activate in

the HLDD a path lm from the root node to the node

m under test, and for each output k of the node m a

path lk to a terminal node mT
k with operation f(mT

k ).
The value of z(m), which represents a sub-field of the

instruction code, will be cyclically varied during the

pseudo-exhaustive test execution.

2) Data path initialization: find the proper sets of data

values D(m) which satisfy the constraints (2) and (3).

3) Test implementation: the generated instruction should be

repeated for all the values z(m) of the node m under test,

updated dynamically by these values, and using always

the same data operands in D(m).

B. Scanning tests

The test program is synthesized on the high-level directly

from the HLDD model, and the data for the test program are



generated by a traditional gate-level ATPG using the given

descriptions of the data blocks.

Algorithm 2. Scanning test program generation for testing

the data path (terminal node m) for operation f(m).

1) High-level test generation: activate in the HLDD a path

lm from the root to the terminal node m.

2) Low-level test generation: find the proper sets of data

values D(m) for the arguments in f(m).
3) Test implementation: the generated instruction should be

repeated for all the values of D(m), i.e. for all of the

arguments of f(m).

C. SBST generation with a tool

The proposed tool, is utilizing these ideas in the test

program generation process. The result of test generation, is a

test pattern, which holds encoded information about instruction

and operands (Figure 7(A)). Since, there is normally no

framework available to handle test program for microprocessor

in machine code, the task of SBST generator (see Figure 1) is

to decode patterns (Figure 7(B)) obtained from test generator

into assembly instructions. This is done by using predefined

templates stored in the assembly code library. As a result, the

test program, compiled from code templates is made. It can

be edited further, in order to improve the fault coverage, or

add code parts, which can not be generated automatically.

Two types 
of test are 
generated 

The result of the test 
generation step, is a 
binary instruction 
code, which holds 
encoded information 
about instructions and 
operands.  Encoded XOR 

instruction 

Initialization: 
Load test data to registers 

Test: 
  Execute instruction    

Fig. 7. Example of test program generation

The test program generation process is shown in general

in Figure 7. The process can be divided into two parts -

initialization and test. The initialization part is loading test

data into registers, and the test part is combining the instruction

fields from the library into the full instruction code. In Figure

7(C), a subset of generated test program is shown. The first

part of code represents an initialization process. The registers

are filled with data (partially shown). Every register is loaded

with data before testing each instruction, so that to avoid

fault masking [24]. Then, the test part is being generated.

In the section A of Figure 7, a test pattern string, retrieved

from the test generator is shown. Since the instruction fields

are known (Table III), the test generator can walk trough

HLDD nodes, and construct the corresponding instruction.

A path, highlighted in green leads to the instruction XOR

(Figure 7(B)). Test generator is looking for XOR assembly

code template in premade SPARCv8 library, and modifies it

to read data from registers, specified by the test generator (rd,

rs1 and rs2 fields) (Figure 7(A, C)).

Test program generation is strongly affected by the mod-

eling level made in previous steps. The more details can

be extracted from instruction set architecture, the better test

program can be generated. Specific behavior of the processor

can be hidden or even invisible from the ISA point of view,

and simple list of instructions not enough to cover the realistic

structural results.

The exact fault coverage can be calculated by gate-level

fault simulation. The not detected gate-level faults may belong

to the class of redundant faults. Otherwise, to detect these

faults, low-level ATPGs can be used for generating additional

test operands.

The main contribution of the proposed method of SBST

generation is to substitute existing labour extensive low-level

test generation methods with fast high-level test generation,

accompanied with as well fast low-level fault simulation to

obtain the exact evaluation of the test quality.

VI. EXPERIMENTAL RESULTS

In the experiments, a test program was generated automati-

cally for the Integer Unit (IU) of Leon 3. The Fault simulation

of the generated test program was made using TetraMAX

[40] software. The fault simulation framework is described

in details in our previous work [24]. The results are shown

in Table IV. ”HLDD test program” shows a result of fault

simulation with automatically generated test program. ”HLDD

test program random” is automatically generated, but test

operands are selected randomly. ”Leon3 startup test” is a test

program supplied with processor description files [41], which

tests memory and peripherals on startup. ”TetraMAX ATPG”

represent a local fault coverage of patterns generated by a

sequential ATPG tool. However not all generated test vectors

are functionally correct (they cannot be reproduced during

normal CPU operation), hence the coverage is overestimated.

The row ”HLDDtp + Leon 3 st” represents the fault coverage

result for both test programs. According to calculated fault

coverage, we can assume, that those programs can complement

each other and cover additional faults in components of Integer

Unit. From the point of view of test engineer, our tool is a

good opportunity to improve fault coverage (about 5%), with

minimal effort.

The low fault coverage is explained by the fact that not all

instructions using the Integer Unit were taken into account for

building the HLDD model. Extension of the model for the full

instruction list needs further research.

However, to demonstrate the feasibility and efficiency of the

approach for the case when the HLDD model covers full set

of microprocessor instructions, the experimental research was

carried out for the PARWAN microprocessor. The results in

comparison with previous research on PARWAN [42], [43] are

depicted in Table V, which demonstrates the superiority of our

results. The PARWAN was used because of the availability of

published results for that microprocessor.



TABLE IV
LEON 3 INTEGER UNIT FAULT SIMULATION RESULTS

Leon 3
Integer Unit

Faults
total/testable FC, %

Fault simulation,
in minutes

HLDD test program

42780 / 38847

43,84 34

HLDD test program random 41,40 78

Leon 3 startup test 40,93 22

HLDD tp + Leon 3 st 45,26 78

Tetra max ATPG 72,89 2496 *

* time used for ATPG and fault simulation together
TABLE V

PARWAN FAULT SIMULATION RESULTS

Module #Faults
Fault coverage %

Proposed method [43] [42]

AC 156 99.3 99.30 99.30

IR 228 99.4 96.40 98.60

PC 590 99.3 99.00 89.20

MAR 342 99.2 96.40 97.20

SR 130 99.0 96.80 98.90

ALU 956 99.3 98.00 98.50

SHU 310 100 99.20 94.10

Control 648 89.8 84.40 88.30

Total 2960 98.04 96.19 95.51

In this experiment with Leon processor we concentrated

on test generation for the data path of the IU, which is

related to fetch, decode and memory stages of the pipeline

[30], other stages are tested indirectly. Moreover, since we

concentrated our efforts only for IU-related instruction groups

(ALU and memory), then a lot of control part functionality was

not covered by HLDD test, like state, flags, traps, FPU and

Coprocessor instructions and controling rotation of register

windows (exclusive for SPARC architecture). This explains

the low fault coverage. The further work will be to extend

the not yet covered hardware part responsible for the unused

instruction groups. Still, the composed program was able

to discover a considerable amount of faults, which weren’t

covered by default Leon 3 test program. Test data, which was

selected by test generator gives better fault coverage, than

random data. The fault simulation time is increased in case

of random data, because the amount of data is multiple times

more than in case of deterministic test data generation.

VII. CONCLUSION

In this paper we developed first, a novel algorithm and a

tool for formal synthesis of the HLDD model for a given set of

the instructions of the microprocessor under test, and second, a

tool for automated software-based self-test program generation

for microprocessors based on the HLDD model.
The novelty of described tool is an automation of test pro-

gram generation. The capabilities of the tools are demonstrated

on the 8-bit microprocessor PARWAN, and on the 32-bit Leon

3 SPARCv8 microprocessor. In combination with the fault

simulation tools, the described in the paper test generation

tool promises to be a helpful instrument for test engineers.

The positive fault coverage results, obtained during evaluation

of the test program with TetraMAX simulator, are confirming

the feasibility of the proposed approach.
However, because of the unique features of the investigated

Leon microprocessor architecture, a fully-automatic approach

for its full instruction set is not available at the moment. Still,

test engineer can modify generated test program in order to

increase fault coverage.

A field of the future work exists. A backwards analysis

of assembly program, can show, which paths are covered

on the HLDD model of the microprocessor, and make an

approximate fault coverage estimation of the test program.

This will decrease test program development time, since

fault simulation, especially sequential, takes lots of time and

computational resources.
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