PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laboratory study of suspended sediment dynamics over a mildly sloping sandy seabed

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of laboratory measurements of suspended sediment movement induced by regular non-linear water waves propagating over a mildly sloping sandy seabed covered with ripples. The measurements conducted in a water flume were carried out by applying the technique of particle image velocimetry (PIV). The aim of those experiments was to investigate near-bed velocities of sediment particles under controlled surface wave conditions. In particular, horizontal and vertical profiles of sand grain velocities were measured, and some comparisons between the measured and theoretically-predicted quantities were carried out. A number of selected wave cases were examined, for which the Ursell number ranged from 18 to 39, and the sediment grain mobility numbers varied between 12 and 26. For these flow conditions, the near-bed layer of intense sediment grain movements had a thickness of about 2-3 ripple heights. The maximum horizontal sediment velocities measured over ripple crests were about twice as large as those over ripple troughs. Vertical sediment velocities above ripple crests and troughs were similar, amounting to about 1/4 to 1/3 of horizontal velocities over ripple crests. The detailed quantitative results obtained in the flume can help validate other experimental techniques and can be useful in testing numerical models for simulating surface wave-induced sediment dynamics.
Czasopismo
Rocznik
Strony
350--367
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • [1] Ahmed, A. S. M., Sato, S., 2001. Investigation of bottom boundary layer dynamics of movable bed by using enhanced PIV technique. Coast. Eng. 43 (4), 239-258, http://dx.doi.org/10.1142/S0578563401000360.
  • [2] Alsina, J. M., Caceres, I., Brocchini, M., Baldock, T. E., 2012. An experimental study on sediment transport and bed evolution under different swash zone morphological conditions. Coast. Eng. 68, 31-43, http://dx.doi.org/10.1016/j.coastaleng.2012.04.008.
  • [3] Bagnold, R. A., 1946. Motion of waves in shallow water, interaction between waves and sand bottoms. Philos. Trans. R. Soc. Lond. A187, 1-15, http://dx.doi.org/10.1098/rspa.1946.0062.
  • [4] Doering, J. C., Baryla, A. J., 2002. An investigation of the velocity field under regular and irregular waves over a sand beach. Coast. Eng. 44, 275-300, http://dx.doi.org/10.15142/T3ZP4F.
  • [5] Fenton, J. D., 1990. Nonlinear wave theories. Sea 9 (1), 3-25.
  • [6] Fredsoe, J., 1984. Turbulent boundary layer in wave-current motion. J. Hydraul. Res. 110 (8), 1103-1120, http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:8(1103).
  • [7] Fredsoe, J., Deigaard, R., 1992. Mechanics of Coastal Sediment Transport. World Scientific Publ., Singapore, 392 pp., http://dx.doi.org/10.1142/1546.
  • [8] Grant, W. D., Madsen, O. S., 1979. Combined wave and current interaction with a rough bottom. J. Geophys. Res 84, 1797-1808, http://dx.doi.org/10.102/JC084iC04p01797.
  • [9] Grant, W. D., Madsen, O. S., 1982. Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res. 87, 469-481, http://dx.doi.org/10.1029/JC087iC01p00469.
  • [10] Hedges, T. S., 1995. Regions of validity of analytical wave theories. Proc. Inst. Civ. Eng. Water Marit. Energy 112, 111-114, http://dx.doi.org/10.1680/iwtme.1995.27656.
  • [11] Inman, D., Bowen, A. J., 1962. Flume experiments of sand transport by waves and currents. Coast. Eng. Proc. 8, 137-150, http://dx.doi.org/10.1016/0378-3839(79)90019-X.
  • [12] Nielsen, P., 1981. Dynamics and geometry of wave generated ripples. J. Geophys. Res. 86 (C7), 6467-6472, http://dx.doi.org/10.1029/JC086iC07p06467.
  • [13] Nielsen, P., 1992. Coastal Bottom Boundary Layers and Sediment Transport. Advanced Series on Ocean Eng. World Scientific Publishing, Singapore, 340 pp., http://dx.doi.org/10.1142/1269.
  • [14] Onoszko, J., 1965. Dynamics of a Sandy Seashore Profile Under the Action of Water Waves Normal to the Shoreline: Experimental Investigations. (Ph.D. thesis). Inst. Hydro-Eng. PAS, Gdańsk, Poland, (in Polish).
  • [15] Ostrowski, R., 2004. Morphodynamics of a Multi-bar Coastal Zone. Instit. Hydro-Engineering PAS, Gdańsk, Poland, http://dx.doi.org/10.1515/heem-2016-0017.
  • [16] Sato, S., Mimura, N., Watanabe, A., 1984. Oscillatory Boundary Layer Flow Over Rippled Beds. In: Proc. 19th Conf. Coast. Eng., Houston, 2293-2309, http://dx.doi.org/10.1061/9780872624382.155.
  • [17] Stachurska, B., Staroszczyk, R., 2016. An investigation of the velocity field over rippled sand bottom. In: Proc. 6th IAHR IJREWHS, Lubeck, Germany, 122-131, http://dx.doi.org/10.15142/T3ZP4F.
  • [18] Thielicke, W., Stamhuis, E. J., 2014. PIVlab — towards user-friendly, affordable and accurate digital Particle Image Velocimetry in MATLAB. J. Open Res. Software, http://dx.doi.org/10.5334/jors.bl.
  • [19] Umeyama, T., 2012. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Phil. Trans. R. Soc. A 370, 1687-1702, http://dx.doi.org/10.1098/rsta.2011.0450.
  • [20] Ursell, F., 1953. The long-wave paradox in the theory of gravity waves. Math. Proc. Camb. Philos. Soc. 49 (4), 685-694, http://dx.doi.org/10.1017/S0305004100028887.
  • [21] Van der Werf, J. J., Doucette, J. S., O'Donoghue, T., Ribberink, J. S., 2007. Detailed measurements of velocities and suspended sand concentrations over full-scale ripples in regular oscillatory flow. J. Geophys. Res. 112, F02012, http://dx.doi.org/10.1029/2006JF000614.
  • [22] Willert, C. E., Gharib, M., 1991. Digital particle image velocimetry. Orig. Exp. Fluids 10, 181-193, http://dx.doi.org/10.1007/BF00190388.
  • [23] Yang, B., Wang, Y., Liu, J., 2011. PIV measurements of two-phase velocity fields in aeolian sediment transport using fluorescent tracer particles. Measurement 44, 708-716, http://dx.doi.org/10.1016/j.measurement.2011.01.007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca11e79b-e70f-4b0e-9b1f-d5e2b5288c33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.