PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MESA: Complete approach for design and evaluation of segmentation methods using real and simulated tomographic images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present MESA: a platform for design and evaluation of medical image segmentation methods. The platform offers a complete approach for the method creation and validation using simulated and real tomographic images. The system consists of several modules that provide a comprehensive workflow for generation of test data, segmentation method development as well as experiment planning and execution. The test data can be created as a virtual scene that provides an ideal reference segmentation and is also used to simulate the input images by a virtual magnetic resonance imaging (MRI) scanner. Both ideal reference segmentation and simulated images could be utilized during the evaluation of the segmentation methods. The platform offers various experimental capabilities to measure and compare the performance of the methods on various data sets, parameters and initializations. The segmentation framework, currently based on deformable models, uses a template solution for dynamical composition and creation of two- and three-dimensional methods. The platform is based on a client–server architecture, with computational and data storage modules deployed on the server and with browser-based client applications. We demonstrate the platform capabilities during the design of segmentation methods with the use of simulated and actual tomographic images.
Twórcy
autor
  • Faculty of Computer Science, Bialystok University of Technology ul. Wiejska 45A, 15-351 Bialystok, Poland
autor
  • Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
autor
  • Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
autor
  • Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
Bibliografia
  • [1] Meinzer HP, Thorn M, Cardenas CE. Computerized planning of liver surgery – an overview. Computers & Graphics 2002;26:569–76.
  • [2] MathWorks MATLAB; 2013, http://www.mathworks.com/products/matlab/.
  • [3] Wolfram Mathematica Technical Computing Software; 2013, http://www.wolfram.com/mathematica/.
  • [4] ImageJ – image processing and analysis in Java; 2013, http://rsbweb.nih.gov/ij/.
  • [5] 3D Slicer; 2013, http://www.slicer.org.
  • [6] 3D-IRCADb – 3D image reconstruction for comparison of algorithms database; 2013, http://www.ircad.fr/softwares/3Dircadb/3Dircadb.php.
  • [7] Campadelli P, Casiraghi E, Esposito A. Liver segmentation from computed tomography scans: a survey and a new algorithm. Artificial Intelligence in Medicine 2009;45:185–96.
  • [8] Kuperman V. Magnetic resonance imaging – physical principles and applications. San Diego: Academic Press; 2000.
  • [9] Westbrook C, Roth CK, Talbot J. MRI in practice. 4th ed. Oxford: Wiley-Blackwell; 2011.
  • [10] Bloch F, Hansen WW, Packard M. Nuclear induction. Physical Review 1946;69:127.
  • [11] Aibinu AM, Salami MJE, Shafie AA, Najeeb AR. MRI reconstruction using discrete Fourier transform: a tutorial. World Academy of Science Engineering and Technology 2008;18:179–85.
  • [12] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision 1988;1 (4):321–31.
  • [13] Cohen LD. On active contour models and balloons. CVGIP: Image Understanding 1991;53:211–8.
  • [14] Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 1998;7:359–69.
  • [15] Gunn SF, Nixon MS. A robust snake implementation; a dual active contour. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997;19:63–8.
  • [16] Mcinerney T, Terzopoulos D. T-snakes: topology adaptive snakes. Medical Image Analysis 2000;4:73–91.
  • [17] Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press; 1999.
  • [18] Jalba AC, Wilkinson MHF, Roerdink JBTM. CPM: a deformable model for shape recovery and segmentation based on charged particles. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004;26.
  • [19] Miller JV, Breen DE, Lorensen WE, O'Bara RM, Wozny MJ. Geometrically deformed models: a method for extractingclosed geometric models form volume data. SIGGRAPH Computer Graphics 1991;25:217–26.
  • [20] Montagnat J, Delingette W, Ayache N. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing 2001;19:1023–40.
  • [21] Heimann T, Meinzer HP. Statistical shape models for 3D medical image segmentation: a review. Medical Image Analysis 2009;13:543–63.
  • [22] McInerney T, Terzopoulos D. Deformable models in medical image analysis: a survey. Medical Image Analysis 1996;1:91–108.
  • [23] Tsechpenakis G. Deformable model-based medical image segmentation. Multi modality state-of-the-art medical image segmentation and registration methodologies. Springer Publishing; 2011. pp. 33–67.
  • [24] Heimann T, van Ginneken B, Styner MA, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging 2009;28:1251–65.
  • [25] Bittoun J, Taquin J, Sauzade M. A computer algorithm for the simulation of any nuclear magnetic resonance (NMR) imaging method. Magnetic Resonance Imaging 1984;2:113–20.
  • [26] Jurczuk K, Kretowski M. Virtual magnetic resonance imaging – parallel implementation in a cluster computing environment. Biocybernetics and Biomedical Engineering 2009;29:31–46.
  • [27] BeanShell – lightweight scripting for Java; 2005, http://www.beanshell.org.
  • [28] Rhodes ML, Glenn WV, Azaawi YM. Extracting oblique planes from serial CT sections. Journal of Computer Assisted Tomography 1980;4:649–57.
  • [29] Cabral B, Cam N, Foran J. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. ACM Symposium on Volume Visualization. 1994. pp. 91–8.
  • [30] Thon S, Gesquiere G, Raffin R. A low cost antialiased space filled voxelization. GraphiCon of Polygonal Objects. 2004. pp. 71–8.
  • [31] Apache Axis2/Java – next generation Web services; 2013, http://axis.apache.org/axis2/java/core/.
  • [32] Apache Tomcat; 2013, http://tomcat.apache.org/.
  • [33] Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magnetic Resonance in Medicine 2005;54:507–12.
  • [34] de Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004;230:652–9.
  • [35] Reska D, Kretowski M. HIST – an application for segmentation of hepatic images. Zeszyty Naukowe Politechniki Bialostockiej Informatyka 2011;7:71–93.
  • [36] Reska D, Boldak C, Kretowski M. Fast 3D segmentation of hepatic images combining region and boundary criteria. Image Processing & Communications 2012;17:31–8.
  • [37] Reska D, Boldak C, Kretowski M. A distributed approach for development of deformable model-based segmentation methods.Image processing and communications challenges 5. Advances in intelligent and soft computing, vol. 233. 2014. pp. 21–28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca11d93f-e127-486c-a300-508fad62c983
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.