Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the authors present highly accurate and remarkably efficient computational methods for fractional order derivatives and integrals applying Riemann-Liouville and Caputo formulae: the Gauss-Jacobi Quadrature with adopted weight function, the Double Exponential Formula, applying two arbitrary precision and exact rounding mathematical libraries (GNU GMP and GNU MPFR). Example fractional order derivatives and integrals of some elementary functions are calculated. Resulting accuracy is compared with accuracy achieved by applying widely known methods of numerical integration. Finally, presented methods are applied to solve Abel’s Integral equation (in Appendix).
Słowa kluczowe
Rocznik
Tom
Strony
723--733
Opis fizyczny
Bibliogr. 24, tab., wykr.
Twórcy
autor
- Faculty of Electrical, Electronic, Computer and Control Engineering, Institute Of Applied Computer Science, Lodz University of Technology, 18/22 Stefanowskiego St., 90-537 Łódź, Poland
autor
- Faculty of Electrical, Electronic, Computer and Control Engineering, Institute Of Applied Computer Science, Lodz University of Technology, 18/22 Stefanowskiego St., 90-537 Łódź, Poland
Bibliografia
- [1] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order”, in Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien, 1997.
- [2] I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering. vol. 198, Academic Press, New York, 1999.
- [3] D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Pub. Co. Inc, London, 2012.
- [4] P.K. Kythe and M.R. Sch¨aferkotter, Handbook of Computational Methods for Integration, Chapman & Hall/CRC, London, 2005.
- [5] R.L. Burden and J.D. Faires, Numerical Analysis, Brroks/Cole Cengage Learning, Boston, 2003.
- [6] D.W. Brzeziński and P. Ostalczyk, “Numerical evaluation of fractional differ-integrals of some periodical functions via the IMT transformation”, Bull. Pol. Ac.: Tech. 60 (2), 285-292 (2012).
- [7] W.H. Press, S.A. Teukolsky, and B.P. Vetterling, Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, Cambridge, 2007.
- [8] M. Mori, “Developments in the double exponential formulas for numerical integration”, Proc. Int. Congress of Mathematicians 1, CD-ROM (1990).
- [9] N.M. Korobov, Teoretikocislowyie Metody w Priblizennom Analize, Gosudarstwennoe Izdatelstwo Fizyko-Matematiceskoj Literatury, Moscow, 1963.
- [10] S. Haber, “The Tanh rule for numerical integration”, SIAM J. Numer. Anal. 14, 668-685 (1999).
- [11] C. Schwartz, “Numerical integration of analytic functions”, J. Computational Physics 4, 19-29 (2000).
- [12] F. Stenger, “Integration formulae based on the trapezoidal formula”, J. Inst. Math. Appl. 12, 14 (1973).
- [13] H. Takahasi, Quadrature Formulas Obtained by Variable Transformation, Springer Verlag, Berlin, 1973.
- [14] J. Waldvogel, “Towards a general error theory of the trapezoidal rule”, in Approximation and Computation 42, 267-282 (2011).
- [15] N. Hale and A. Townsend, “Fast and accurate computation of gauss-legendre and gauss-jacobi quadrature nodes and weights”, Siam J. Sci. Comput. 35, 652-674 (2013).
- [16] K.R. Ghazi, V. Lefèvre, P. Théveny, and P. Zimmermann, “Why and how to use arbitrary precision”, IEEE Computer Society 12, 5 (2010), DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.73.
- [17] D.W. Brzeziński and P. Ostalczyk, “The Gr¨unwald-Letnikov formula and its horner’s equivalent form accuracy comparison and evaluation to fractional order PID controller”, IEEE Explorer Digital Library: IEEE Conference Publications, 17thInt. Conf. Methods and Models in Automation and Robotics MMAR’12, CD-ROM (2012).
- [18] M. Busłowicz and A. Ruszewski, “Necessary and sufficient conditions for stability of fractional discrete-time linear state-space systems”, Bull. Pol. Ac.: Tech. 61 (4), 779-786 (2013).
- [19] T. Kaczorek, “Decoupling zeros of positive continuous-time linear systems”, Bull. Pol. Ac.: Tech. 61 (3), 557-562 (2013).
- [20] W. Mitkowski and P. Skruch, “Fractional-order models of the supercapacitors in the form of RC ladder networks”, Bull. Pol. Ac.: Tech. 61 (3), 581-587 (2013).
- [21] A. Dzielinski, G. Sarwas, and D. Sierociuk, “Comparison and validation of integer and fractional order ultracapacitor models”, Advances in Difference Equations 1, 11-23 (2011).
- [22] W. Mitkowski, “Approximation of fractional diffusion-wave equation”, Acta Mechanica et Automatica 5, 65-68 (2011).
- [23] A. Obrączka and W. Mitkowski, “The comparison of parameter identification methods for fractional partial differential equation”, Diffusion and Defect Data - Solid State Data. Part B, Solid State henomena B 210, 265-270 (2014).
- [24] M. Błasik and M. Klimek, “Exact solution of two-term nonlinear fractional differential equation with sequential Riemann- Liouville derivatives”, Advances in the Theory and Applications of Non-integer rder Systems. Lecture Notes in Electrical Engineering 257, 161-170 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca11d5d7-0048-4377-b19d-8b8b66b4288f