PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Selective separation of chalcopyrite from jamesonite with guar gum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel reagent, guar gum (GG), is investigated as the depressant on the depression of chalcopyrite and jamesonite, when mixed aerofloat (CSU11) is used as the collector in flotation tests. Kinetics, dynamic potential, adsorption and infrared spectra analysis are performed to study the interaction mechanism between GG and minerals. The flotation results display that selective flotation separation of chalcopyrite from jamesonite is achieved under conditions of depressant GG 2.5 mg/dm3, collector CSU11 10 mg/dm3 and frother MIBC (Methyl isobutyl carbinol) 10 mg/dm3 at pH 5.3. As to mixed minerals flotation, the Cu grade and recovery in the concentrate is 21.35 % and 85.12 %, respectively, indicating that GG has a selective depression effect on jamesonite. Flotation kinetics shows that the addition of GG can dramatically reduce the floatability of jamesonite but hardly influences that of chalcopyrite. The zeta potential and adsorption reveal that the depressant GG adsorbs strongly on the surface of jamesonite. Infrared spectra reveal a dominant chemisorption between GG and jamesonite, while GG occurs weak chemisorption on chalcopyrite surface. This is the reason why GG has excellent selectivity for jamesonite and less effect on chalcopyrite.
Słowa kluczowe
Rocznik
Strony
237--247
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Zhaojin Mining Industry Company Limited, Yantai 264000, Shandong, China
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Bibliografia
  • ANTHONY, J.W., BIDEAUX, R.A., BLADH, K.W., NICHOLS, M.C., 2005. Handbook of Mineralogy. Mineralogical Society of Amer.
  • BULATOVIC, S., WYSLOUZIL, D.M., 1995. Selection and evaluation of different depressants systems for flotation of complex sulphide ores. Miner. Eng. 8(1), 63-76.
  • BULATOVIC, S., 1999. Use of organic polymers in the flotation of polymetallic ores: a review. Miner. Eng. 12(4), 314–354.
  • BUCKLEY, A.N., HOPE, G.A., PARKER, G.K., STEYN, J., WOODS, R., 2017. Mechanism of mixed dithiophosphate and mercaptobenzothiazole collectors for cu sulfide ore minerals. Minerals Engineering, 109, 80-97.
  • CHEN, J.H., FENG, Q.M., LU, Y.P., 2000. Research on a new organic depressant ASC for separation chalcopyrite and galena. Conserve. Util. Miner. Resour. 5, 39-42.
  • CHEN, J.H., WU, B.Z., CHEN, B., 2005. Fundamental flotation behaviors of the jamesonite and marmatite and the depressing mechanism of NaCN. Conserv.Util. Miner. Resour. 4, 27-30.
  • CHEN, J.H., LI, Y.Q., CHEN, Y., 2011a. Cu-S flotation separation via the combination of sodium humate and lime in a low pH medium. Miner. Eng. 24, 58-63.
  • CHEN, J.H., WANG, L., CHEN, Y., GUO, J., 2011b. A DFT study of the effect of natural impurities on the electronic structure of galena. Int. J. Miner. Process. 98, 132-136.
  • CHEN, F.S., XU, H.F., WANG, S.L., ZHENG, L., 2012. A study on preparation of low viscosity guar gum and its strengthening performance. China Pulp Pap. Ind. 33(2), 13-16.
  • CASTRO, R.R., SILVA, C.M.M., NUNES, R.M., PAULA, R.C., FEITOSA, J.P., 2016. Structural characteristics are crucial to the benefits of guar gum in experimental osteoarthritis. Carbohydr. Polym. 150,392–399.
  • DENG, H.B., XU, S., 1990. Flotation mechanism of jamesonite and its separation from marmatite. Nonferr. Met.6, 15-18.
  • FROLLINI, E., REED, W.F., MILAS, M., RINAUDO, M., 1995. Polyelectrolytes frompolysaccharides:selective oxidation of guar gum-a revisited reaction. Carbohydr. Polym. 27(2), 129-135.
  • FAIRTHORNE, G., BRINEN, J.S., FORNASIERO, D., NAGARAJ, D.R., RALSTON, J., 1998. Spectroscopic and electrokinetic study of the adsorption of butyl ethoxycarbonyl thiourea on chalcopyrite. International Journal of Mineral Processing. 54(3-4), 147-163.
  • FULLSTON, D., FORNASIERO, D., RALSTON, J., 1999. Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 146(1/3), 113-121.
  • GADSDEN, J.A., 1975. Infrared spectra of minerals and related inorganic compounds. Infrared Spectra of Minerals & Related Inorganic Compounds.
  • GAO, Y.S., GAO, Z.Y., SUN, W., YIN, Z.G., WANG, J.J., HU Y.H.,2018. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci., 512, 39-46.
  • GONG, H.H., LIU,M.Z., ZHANG, B., CUI, D., GAO, C., NI, B., 2011. Synthesis of oxidized guar gumby drymethod and its application in reactive dye printing. Int. J. Biol. Macromol. 49 (5), 1083-1091.
  • HEALY, T.W., MOIGNARD, M.S., 1976. A review of electrokinetic studies of metal sulphides. In: Flotation. New York: Gaudin Memorial. 275-297.
  • HU, Y.H., FENG, Q.M., 2006. Mineral Processing Technology and Equipment. Science Press, Beijing.
  • HUANG, P., CAO, M.L., LIU, Q., 2012. Using chitosan as a selective depressant in the differential flotation of Cu–Pb sulfides. Int. J. Miner. Process. 106–109(2), 8-15.
  • HU, Y.H., 2014. Mineral Flotation. Central South University Press, Changsha.
  • HUANG, P., WANG, L., LIU, Q., 2014. Depressant function of high molecular weight poly-acrylamide in the xanthate flotation of chalcopyrite and galena. Int. J. Miner. Process. 128, 6-15.
  • HUANG, Y.G., LIU, G.Y., MA, L.Q., LIU, J., 2017. 5-Heptyl-1, 3, 4-oxadiazole-2-thione: Synthesis and flotation mechanism to chalcopyrite.Journal of Industrial and Engineering Chemistry. 3787, 9-18.
  • LI, C., GAO Z., 2017. Effect of grinding media on the surface property and flotation behavior of scheelite particles. Powder Technol, 322, 386-392.
  • LIU, R.Y., LI, W.J., HE, X.C., ZHOU, W.J., HAN, M.Q., 1994. Study of Sb–Pb–Zn sulfide minerals comprehensive utilization. Nonferrous Met. (Miner. Process. Sect.) 04, 1-6.
  • LIU, Q., ZHANG, Y.H., 2000. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin. Miner. Eng. 13, 1405-1416.
  • LIU, R.Q., SUN, W., HU, Y.H., 2009. Study on organic depressant FCLS for separation of chalcopyrite and galena. Min. Metall. Eng. 29(3), 30-35.
  • LU, Y.S., 2011. Research status and progress of copper-lead mixed concentrates. World Nonferrous Met. 03, 44–47.
  • LIN, W., TIAN, J., REN, J., XU, P., DAI, Y., SUN, S., 2015. Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution. Environmental Science & Pollution Research International. 23(1), 1-8.
  • LIU, R.Z., QIN, W.Q., JIAO, F., WANG, X.J., PEI, B., YANG, Y.J., 2016. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Transactions of Nonferrous Metals Society of China. 26(1), 265-271.
  • LIU, S., LIU, G.Y., ZHONG, H., YANG, X.L., 2017.The role of HABTC’s hydroxamate and dithiocarbamate groups in chalcopyrite flotation. Journal of Industrial and Engineering Chemistry. 52, 359-368
  • LÓPEZ-VALDIVIESO, A.,LOZANO-LEDESMA, L.A.,ROBLEDO-CABRERA, A., OROZCO-NAVARRO, O.A., 2017. Carboxymethylcellulose (CMC) as PbS depressant in the processing of Pb-Cu bulk concentrates. adsorption and floatability studies. Minerals Engineering. 112, 77-83.
  • MI, L.P., SUN, C.B., LI, Q., XU, T., LIU, X.W., 2009. Experimental study on copper-lead separation with the combinatorial depressant. Met. Mine. 8, 53-55.
  • MESSALI, M., LGAZ, H., DASSANAYAKE, R., SALGHI, R., JODEH, S., ABIDI, N., 2017. Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium: electrochemical, surface, DFT and MD simulations studies. Journal of Molecular Structure. 1145(9), 43-54.
  • PIAO, Z.J., WEI, D.Z., LIU, Z.L., LIU, W.G., GAO, S.L., LI, M.Y., 2013. Selective depression of galena and chalcopyrite by O, O-bis (2,3-dihydroxypropyl) dithiophosphate. Trans. Nonferr. Met. Soc. China. 23, 3063-3067.
  • PIAO, Z.J., WEI, D.Z., LIU, Z.L., 2014. Influence of sodium 2, 3-dihydroxypropyl dithiocarbonate on floatability of chalcopyrite and galena. Trans. Nonferr. Met. Soc. China. 24, 3343-3347.
  • QIN, W.Q., WEI, Q., JIAO, F., LI, N., WANG, P.P., KE, L.F., 2012. Effect of sodium pyrophosphate on the flotation separation of chalcopyrite from galena. Int. J. Min. Sci. Technol. 22, 345-349.
  • QIN, W.Q., JIAO, F., SUN, W., WANG, X.J., LIU, B., WANG, J., ZENG, K., WEI, Q., LIU, K.,2013a. Effects of sodium salt of N, N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties. Colloids Surf. A: Physicochem. Eng. Aspects. 421, 181-192.
  • QIN, W.Q., WEI, Q., JIAO, F., YANG, C.R., LIU, R.Z., WANG, P.P., KE, L.F., 2013b. Utilization of polysaccharides as depressants for the flotation separation of copper/lead concentrate. Int. J. Min. Sci. Technol. 23, 179-186.
  • RATH, R. K., SUBRAMANIAN, S., PRADEEP, T., 2000. Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. Journal of Colloid & Interface Science. 229(1), 82.
  • SHORTRIDGE, P.G., HARRIS, P.J., BRADSHAW, D.J., KOOPAL, L.K., 2000. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc. Int. J. Miner. Process. 59, 215-224.
  • SUN, Y.L., LI, F.L., 2007. Mineral processing flowsheet for Long Zixin Pb-Zn-Sb-Ag polymetallic ores. Gansu Metall. 29(4), 30-32.
  • WANG, Z.S., GUO, Y.Q., 2002. Application of CMC in the flotation separation of Cu-Pb. Conserv. Util. Miner. Resour. 1, 31-34.
  • WEI, M.A., SUN, C.Y., 2008. Review and development tendency of the copper and lead sulfides flotation separations. Ming Metall. 02, 6-16.
  • WANG, X.L., 2012. Mineral Process and Mechanism Study of Qi Baoshan Copper-Lead-Zinc Ores. Jiangxi University of Science and Technology, Ganzhou.
  • WANG, K.P., WANG, L., CAO, M.L., LIU, Q., 2012. Xanthation-modified polyacrylamide aspectroscopic investigation of its adsorption onto mineral surfaces. Miner. Eng. 39, 1-8.
  • WANG, Z., QIAN, Y., XU, L.H., DAI, B., XIAO, J.H., & FU, K., 2015. Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant. Minerals Engineering. 74, 86-90.
  • YALCIN, E., KELEBEK, S. 2011. Flotation kinetics of a pyritic gold ore. International Journal of Mineral Processing. 98(1–2), 48-54.
  • YIN, Z.G., SUN, W., HU. Y.H., GUAN, Q.J., ZHANG, C.H., GAO, Y.S., 2017. Depressing behaviors and mechanism of disodium bis (carboxymethyl) trithiocarbonate on separation of chalcopyrite and molybdenite. Transactions of Nonferrous Metals Society of China. 27(4), 883-890.
  • ZHANG, Q., HU, Y.H., XU, J., CHEN, T.J., 2005. Study of the collectorless flotation of jamesonite. Nonferrous Met. (Min. Process.) 3, 44-46.
  • ZHANG, T., QING, W.Q., 2015. Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium dibutyl dithiophosphate. Journal of Central South University (English). 22(4), 1232-1240.
  • ZHANG, X., QIAN, Z., ZHENG, G., ZHU, Y., WU, W., 2017. The design of a macromolecular depressant for galena based on dft studies and its application. Minerals Engineering. 112, 50-56.
  • ZHAO, K., YAN, W., WANG, X., HUI, B., GU, G., WANG, H., 2017. The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant. International Journal of Mineral Processing. 161, 78-82.
  • ZENG, X., XU, L., TIAN, J., YIN, W., YANG, Y., DENG, W. 2017. Effect of a CA depressant on flotation separation of celestite from fluorite and calcite using SDS as a collector. Minerals Engineering. 111, 201-208.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca0f500b-5ed4-406d-83de-b61eb8d4bbae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.