PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Methods: Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. Results: The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Conclusions: Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.
Rocznik
Strony
93--102
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Prosthetic Dentistry, Medical University of Lodz, Lodz, Poland
autor
  • Institute of Materials Engineering, Technical University of Lodz, Lodz, Poland
  • Department of General Dentistry, Medical University of Lodz, Lodz, Poland
Bibliografia
  • [1] ASHRAFIZADEH A., ASHRAFIZADEH F., Structural features and corrosion analysis of thermally oxidized titanium, J. Alloy Compd., 2009, Vol. 480, 849–852.
  • [2] BLOYCE A., QI P.Y., DONG H., BELL T., Surface Modification of Titanium Alloys for Combined Improvements in Corrosion 8 and Wear Resistance, Surf. Coat. Technol., 1998, Vol. 107, 125–132.
  • [3] BÜRGERS R., HAHNEL S., REICHERT T.E., ROSENTRITT M., BEHR M., GERLACH T., HANDEL G., GOSAU M., Adhesion of Candida albicans to various dental implant surfaces and the influence of salivary pellicle protein, Acta Biomater., 2010, Vol. 6, 2307.
  • [4] EBRAHIMI A.R., ZAREI F., KHOSROSHAHI R.A., Effect of Thermal Oxidation Process on Fatigue Behavior of Ti-4Al-2V Alloy, Surf. Coat. Technol., 2008, Vol. 203, 199–203.
  • [5] FIRSTOV G.S., VITCHEV R.G., KUMAR H., BLANPAIN B., VAN HUMBEECK J., Surface Oxidation of NiTi Shape Memory Alloy, Biomaterials, 2002, Vol. 23, 4863–4871.
  • [6] GULERYUZ H., CIMENOGLU H., Effect of Thermal Oxidation on Corrosion and Corrosion-Wear Behaviour of a Ti-6Al-4V Alloy, Biomaterials, 2004, Vol. 25, 3325–3333.
  • [7] JAMESH M., KUMAR S., SANKARA NARAYANAN T.S.N., Effect of Thermal Oxidation on Corrosion Resistance of Commercially Pure Titanium in Acid Medium, J. Mater. Eng. Perform., 201, Vol. 21(6), 900–906.
  • [8] JOHNSON T., VAN NOORT R., STOKES C.W., Surface analysis of porcelain fused to metal systems, Dent. Mater., 2006, Vol. 22, 330–337.
  • [9] KRZĄKAŁA A., SŁUŻALSKA K., DERCZ G., MACIEJ A., KAZEK A., SZADE J., WINIARSKI A., DUDEK M., MICHALSKA J., TYLKO G., OSYCZKA A.M., SIMKA W., Characterisation of bioactive films on Ti-6Al-4V alloy, Electrochemica Acta, 2013, Vol. 104, 425.
  • [10] KUMAR S., SANKARA NARAYANAN T.S.N., GANESH SUNDARA RAMAN R.S., SESHADRI S.K., Thermal Oxidation of CP-Ti: Evaluation of Characteristics and Corrosion Resistance as a Function of Treatment Time, Mater. Sci. Eng. C, 2009, Vol. 29, 1942–1949.
  • [11] KUMAR S., SANKARA NARAYANAN T.S.N., GANESH SUNDARA RAMAN S., SESHADRI S.K., Thermal Oxidation of CP Ti – An Electrochemical and Structural Characterization, Mater. Charact., 2010, Vol. 61, 589–597.
  • [12] KUMAR S., SANKARA NARAYANAN T.S.N., GANESH SUNDARA RAMAN S., SESHADRI S.K., Thermal Oxidation of Ti6Al4V Alloy: Microstructural and Electrochemical Characterization, Mater. Chem. Phys., 2010, Vol. 119, 337–346.
  • [13] KUMAR S., SANKARA NARAYANAN T.S.N., GANESH SUNDARA RAMAN S., SESHADRI S.K., Fretting Corrosion Behaviour of Thermally Oxidized CP-Ti in Ringer’s Solution, Corros. Sci., 2010, Vol. 52, 711–721.
  • [14] KUMAR S., SANKARA NARAYANAN T.S.N., GANESH SUNDARA RAMAN S., SESHADRI S.K., Surface Modification of CP-Ti to Improve the Fretting Corrosion Resistance: Thermal Oxidation vs. Anodizing, Mater. Sci. Eng. C, 2010, Vol. 30, 921–927.
  • [15] LEINENBACH C., EIFLER D., Influence of Oxidation Treatment on Fatigue and Fatigue-Induced Damage of Commercially Pure Titanium, Acta Biomater., 2009, Vol. 5, 2810–2819.
  • [16] LOPEZ M.F., JIMENEZ J.A., GUTIERREZ A., Corrosion Study of Surface-Modified Vanadium-Free Titanium Alloys, Electrochim. Acta, 2003, Vol. 48, 1395–1401.
  • [17] NAKAJIMA K., TERAO K.I., MIATA T., The Effect of Microstructure on Fatigue Crack Propagation of a + b Titanium Alloys: In-Situ Observation of Short Fatigue Crack Growth, Mater. Sci. Eng. A, 1998, Vol. 243, 176–181.
  • [18] OKABE T., HERO H., The use of titanium in dentistry, Cells. Mater., 1995, Vol. 5, 211–230.
  • [19] PANG I.-CH., GILBERT J.L., CHAI J., LAUTENSCHLAGER E.P., Bonding characteristics of low-fusing porcelain bonded to pure titanium and palladium-copper alloy, J. Prosthet. Dent., 1995, Vol. 73, 17–25.
  • [20] PUCKETT S.D., TAYLOR E., RAIMONDO T., WEBSTER T.J., The relationship between the nanostructure of titanium surfaces and bacterial attachment, Biomaterials, 2010, Vol. 31, 706.
  • [21] ROBIN A., ROSA J.L., SANDIM H.R.Z., Corrosion Behavior of Ti-4Al-4V Alloy in Nitric, Phosphoric and Sulphuric Acid Solutions at Room Temperature, J. Appl. Electrochem., 2001, Vol. 31, 455–460.
  • [22] SIVA R.K., D., BRAMA Y.L., SUN Y., Thick Rutile Layer on Titanium for Tribological Applications, Tribol. Int., 2007, Vol. 40, 329–334.
  • [23] SUROWSKA B., BIENIAŚ J., WALCZAK M., SANGWAL K., STOCH A., Microstructure and mechanical properties of ceramic coatings on Ti and Ti –based alloy, Appl. Surf. Sci., 2004, Vol. 238, 288–294.
  • [24] TUNCDEMIR A.R., KARAHAN I., POLAT S., MALKOC M.A., DALKIZ M., The effect of repeated porcelain firings on corrosion resistance of different dental alloys, J. Adv. Prosthodent., 2013, Vol. 5, 44–50.
  • [25] YU S.Y., BRODRICK C.W., RYAN M.P., SCULLY J.R., Effects of Nb and Zr Alloying Additions on the Activation Behavior of Ti in Hydrochloric Acid, J. Electrochem. Soc., 1999, Vol. 146, 4429–4438.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca070b17-b879-4813-a90b-767780cecd85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.