PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Improvement for Vehicular Communications Using Alamouti Scheme with High Mobility

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The IEEE 802.11p standard is the basic protocol for wireless access in a vehicular environment (WAVE), providing high throughput for multimedia and high quality for vehicular transmissions. However, IEEE 802.11p fails to offer any multi-antenna approaches. In this paper, a multipleinput single-output (MISO) implementation with orthogonal frequency division multiplexing (OFDM), aiming to improve the performance of IEEE 802.11p, is proposed. The authors investigate the impact of time-varying channel on the performance of Alamouti space-time block codes (STBC) in OFDM systems. The Alamouti STBC approach shows good performance in slow time-varying environments, while its Alamouti space frequency block codes (SFBC) counterpart performs better over fast time-varying environments. An adaptive switching scheme is proposed to select appropriate spaceblock coding (STBC or SFBC) in vehicular channels with high mobility levels. It is shown that the proposed adaptive scheme provides better performance compared with traditional spaceblock codes.
Słowa kluczowe
Rocznik
Tom
Strony
47--56
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Laboratoire d'Ingenierie, de Management Industriel, et d'Innovation (LIMII), Faculte des Sciences et techniques (FST), Hassan First University, BP: 577, route de Casablanca, Settat, Morocco
  • Laboratoire d'Ingenierie, de Management Industriel, et d'Innovation (LIMII), Faculte des Sciences et techniques (FST), Hassan First University, BP: 577, route de Casablanca, Settat, Morocco
Bibliografia
  • [1] IEEE Std 802.11a,”Supplement to IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band", IEEE, 1999 [Online]. Available: https://standards.ieee.org/standard/802 11a-1999.html
  • [2] V. Prakaulya and N. Pareek, „Network performance in IEEE 802.11 and IEEE 802.11p cluster based on VANET", in Proc. Int. Conf. Of Electron., Commun. and Aerosp. Technol. ICECA 2017, Coimbatore, India, 2017 (DOI: 10.1109/ICECA.2017.8212713).
  • [3] J. Yang and S. Roy, „On joint transmitter and receiver optimization for multiple-input-multiple-output (MIMO) transmission systems", IEEE Trans. on Commun., vol. 42, no. 12, pp. 3221-3231, 1994 (DOI: 10.1109/26.339844).
  • [4] W. J. Choi and J. M. Cioffi, „Multiple input/multiple output (MIMO) equalization for space-time block coding", in Proc. IEEE Pacific Rim Conf. on Commun., Comp. and Sig. Process. PACRIM 1999, Victoria, BC, Canada, 1999 (DOI: 10.1109/PACRIM.1999.799546).
  • [5] F. Meucci, Single and Cross Layer MIMO Techniques for IMT-Advanced. River Publishers, 2010 (ISBN: 9788792329509).
  • [6] S. Alamouti, „A simple transmit diversity technique for wireless communications", IEEE J. on Selec. Areas in Commun., vol. 16, no. 8, pp. 145-1458, 1998 (DOI: 10.1109/49.730453).
  • [7] A. van Zelst and T. C. W. Schenk, „Implementation of a MIMO OFDM based Wireless LAN system", IEEE Trans. Sig. Process., vol. 52, no. 2, pp. 483-494, 2004 (DOI: 10.1109/TSP.2003.820989).
  • [8] S. Kaiser, „Space frequency block codes and code division multiplexing in OFDM systems", in Proc. Global Telecommun. Conf. GLOBECOM'03, San Francisco, CA, USA, 2003, vol. 4 (DOI: 10.1109/GLOCOM.2003.1258657).
  • [9] K. Lee, Y. Kim, and J. Kang, „Adaptive switching between spacetime and space-frequency block coded OFDM systems", in Proc. IEEE Milit. Commun. Conf. MILCOM 2008, San Diego, CA, USA, 2008 (DOI: 10.1109/MILCOM.2008.4753221).
  • [10] IEEE Std 802.11p, „IEEE 802.11p-2010-IEEE Standard for Information technology-Local and metropolitan area networks-Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments", IEEE, 2010 [Online]. Available: https://standards.ieee.org/standard/802 11p-2010.html
  • [11] ASTM E2213-03, Standard specification for telecommunications and information exchange between road side and vehicle systems - 5 GHz band Dedicated Short Range Communications (DSRC), Medium Access Control and Physical Layer specifications, ASTM international, July 2003 [Online]. Available: https://www.astm.org/Standards/E2213.htm
  • [12] IEEE Std 802.11a, „Wireless LAN medium access control and physical layer specifications: high-speed physical layer in the 5 GHz band", IEEE, 1999 [Online]. Available: https://standards.ieee.org/standard/802 11a-1999.html
  • [13] IEEE Std 802.11p/D3.0, „Draft Amendment to Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications - Amendment 7: Wireless Access in Vehicular Environment", IEEE, 2007 [Online]. Available: https://standards.ieee.org/standard/802 11p-2010.html
  • [14] S. Benkirane and M. Benaziz, „Performance evaluation of IEEE 802.11p and IEEE 802.16e for vehicular ad hoc networks using simulation tools", in Proc. IEEE 5th Int. Congr. on Inform. Sci. and Technol. CiSt 2018, Marrakech, Morocco, 2018 (DOI: 10.1109/CIST.2018.8596442).
  • [15] S. Baek, I. Lee, and C. Song „A new data pilot-aided channel estimation scheme for fast time-varying channels in IEEE 802.11p systems", IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 5169-5172, 2019 (DOI: 10.1109/TVT.2019.2906358).
  • [16] L. Hanzo, J. Akhtman, M. Jiang, and L. Wang, MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-coherent and Cooperative Turbo Transceivers. Wiley-IEEE Press, 2010 (ISBN: 9780470686690).
  • [17] B. Sklar, „Rayleigh fading channels in mobile digital communication systems. Part I: Characterization", IEEE Commun. Mag., vol. 35, no. 7, pp. 90-100, 1997 (DOI: 10.1109/35.601747).
  • [18] Z. A. Polgar, V. Bota, and M. Varga, „Modeling the Rayleighfaded mobile radio channel", Acta Technica Napocensis-Electron. and Telecommun., vol. 47, pp. 7-13, 2006 [Online]. Available: https://www.researchgate.net/publication/284162537 Modeling the Rayleigh-Faded Mobile Radio Channel
  • [19] L. Liang, H. Peng, G. Y. Li, and X. Shen, „Vehicular communications: A physical layer perspective", IEEE Trans. Veh. Technol., vol. 66, no. 12, 2017 (DOI: 10.1109/TVT.2017.2750903).
  • [20] C. J. Clayton, A. J. Stocker, S. K. A. Alwane, and D. Hassan, „Observations of 5.9-GHz Radio Propagation and 802.11p Network Performance at Road Junctions", Radio Science, vol. 54, no. 5, pp. 468-479, 2019 (DOI: 10.1029/2018RS006643).
  • [21] I. Khider, F. Wang, W. H. Yin, Sacko, „The impact of different radio propagation models for Mobile Ad-hocNETworks (MANET) in urban area environment", World J. of Model. and Simul., vol. 5, no. 1, pp. 45-52, 2009 [Online]. Available: http://www.worldacademicunion.com/journal/1746-7233WJMS/wjmsvol05no01paper05.pdf
  • [22] D. B. Lin, P. H. Chiang, and H. J. Li, „Performance analysis of two-branch transmit diversity block coded OFDM systems in time-varying multipath Rayleigh fading channels", IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 136-148, 2005 (DOI: 10.1109/TVT.2004.838826).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca05e5d7-4b42-49ab-a1b3-0944f4c5d332
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.