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Abstract  
 

The operation model of a complex system changing its functional structure and its instantaneous oper-
ation costs during the variable at time operation states and linear programming are proposed to opti-
mize the system operation process in order to get the system total operation cost minimal. The optimi-
zation method allowing to find the optimal values of the transient probabilities of the complex system 
operation process at the particular operation state that minimize the system total operation cost mean 
value under the assumption that the system conditional operation costs mean values at the particular 
operation states are fixed or in the safety state subset not worse than the critical safety state are pre-
sented. The procedure of finding the optimal mean value of system total operation cost for the fixed 
operation time or in the safety state subset not worse than the critical safety state are applied to the port 
oil terminal operation cost minimization. 
 
1. Introduction  
 

In today's industrial landscape, the optimization of 
operation costs plays a vital role in achieving ef-
ficiency and maximizing profitability. Complex 
multistate ageing technical systems (Kołowrocki, 
2014, 2022; Xue, 1995; Xue & Yang, 1985), char-
acterized by their dynamic operation and chang-
ing safety states (Ferreira & Pacheco, 2007; Glynn 
& Haas, 2006; Grabski, 2002, 2015; Limnios & 
Oprisan, 2005; Mercier, 2008; Tang et al., 2007), 
present unique challenges in cost management. 
This article delves into the realm of cost optimi-
zation for such systems, aiming to identify strate-
gies that minimize operation expenses while en-
suring the highest levels of safety and perfor-
mance. 
The operation costs of multistate ageing technical 
systems have a direct impact on the overall finan-
cial health of industries such as manufacturing, 
transportation, and critical infrastructure manage-
ment. With the continuous evolution of these sys-
tems and their components, cost optimization be-

comes a critical factor in maintaining competitive-
ness and sustainability. 
To minimize the system total operation cost for 
the fixed operation time or in the safety state sub-
set not worse than the critical safety state, the lin-
ear programming (Klabjan & Adelman, 2006) is 
used through finding the optimal values of the sys-
tem operation process limit transient probabilities 
at the particular operation states under the fixed 
the system total conditional operation cost in these 
operation states (Kołowrocki, Magryta-Mut, 
2020a; Magryta-Mut, 2020). In both considered 
cases of the system operation cost optimization, 
the procedures of changing the system operation 
process for minimizing the mean value of the sys-
tem total operation cost are proposed. 
The chapter is organized into 6 parts, this Intro-
duction as Section 1, Sections 2–5 and Conclusion 
as Section 6. Section 2 introduces the modeling 
approach for system operation cost. It presents 
two models: cost model 1, which focuses on the 
total operation cost for a fixed operation time, and 
cost model 2, which analyzes the total operation 
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cost in the safety state subsets. Section 3 is dedi-
cated to the optimization of system operation 
costs. By considering the characteristics of the 
multistate ageing system's operation process and 
the conditional instantaneous operation costs at 
different operation states, linear programming 
techniques are applied. This allows for the identi-
fication of the optimal mean value of the system's 
total operation cost for a fixed operation time us-
ing cost model 1, as proposed in Section 2. Addi-
tionally, for safety state subsets not worse than the 
critical safety state, cost model 2 is employed. In 
Section 4, the practical aspect of the study is ex-
plored. The focus is on conducting cost examina-
tions of real and complex system, specifically the 
port oil terminal critical infrastructure. In Section 
5, the proposed procedure for system operation 
cost optimization is applied to real system ana-
lyzed in the Chapter. The obtained optimal values 
are compared to the values prior to the optimiza-
tion process. The chapter concludes with a Sum-
mary section, which evaluates the obtained results 
and proposes future research directions within the 
subject matter. Lastly, a Bibliography section is 
provided, containing relevant references related to 
the chapter topic. 
 
2. Operation cost 
 

2.1. System operation cost model for fixed  
operation time 

 

Similarly to safety analysis of the system im-
pacted by its operation process, we may investi-
gate the system operation total cost for fixed op-
eration time. Namely, we firstly define the instan-
taneous system operation cost in the form of the 
vector  
 
C(t) = [[C(t)](1), [C(t)](2), …, [C(t)](ν)],  (1) 
  ∈ ⟨0,∞),  
 
with the coordinates  
 
[C(t)](b),  ∈ ⟨0,∞),  = 1,2, . . . ,  , (2) 
 
that are the system conditional instantaneous op-
eration costs at the system operation states   ,   = 1,2, . . . ,  .  
Further, it is natural to assume that the system op-
eration total cost during the fixed operation time 

depends significantly on the system operation to-
tal costs at the operation states. This dependency 
is clearly expressed in mean value of the system 
operation total cost during the system operation 
time  , given by  
   ( ) =    [  ( )]( )    ,  > 0, (3) 
 
where   ,  = 1,2, . . . ,  , are limit transient prob-
abilities at operation states defined by: 
   = lim →   ( ) =  = 1,2, . . . ,  , (4) 
 
of transient probabilities  
   ( ) =  ( ( ) =    ), (5) 
  ∈ ⟨0,∞),  = 1,2, . . . ,  ,  
 
of the system operation process Z(t) at the partic-
ular operation states   ,  = 1,2, . . . ,  , and 
[C(θ)](b),  = 1,2, . . . ,  , are the mean values of the 
system conditional operation total costs at the par-
ticular system operation states   ,  = 1,2, . . . ,  , 
given by  
 [  ( )]( ) = ∫ [ ( )]( )      , > 0, (6) 
  = 1,2, . . . ,  ,  
 
where    ,  = 1,2, . . . ,  , are the mean values of 
the system operation process total sojourn times at 
the operation states during the fixed system oper-
ation time  , (Kołowrocki, Magryta-Mut, 2022a, 
2022b; Kołowrocki & Soszyńska-Budny, 
2011/2015; Magryta-Mut, 2023) given by 
    =       =    ,  = 1,2, . . . ,  , (7) 
 
and [C(t)](b),  ∈ ⟨0,∞),  = 1,2, . . . ,  , are the 
system conditional instantaneous operation costs 
at the system particular operation states defined 
by (3).  
 
2.2. System operation cost model in safety 

state subsets 
 

Similarly to safety analysis of the system im-
pacted by its operation process, we may investi-
gate the system operation total costs in the safety 
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state subsets. Namely, we define the instantane-
ous system operation cost in the form of the vector 
 
C(t,⋅) = [C(t,1),…,C(t,z)],  ∈ ⟨0,∞), (8) 
 
with the coordinates given by 
  ( , ) ≅   [  ( ,  )    ]( ), (9) 
  ∈ ⟨0,∞),  = 1,2, . . . ,  , 
 
where [C(t,u)](b),  = 1,2, . . . ,  ,  = 1,2, . . . ,  , 
are the coordinates of the vector 
 
[C(t,⋅)](b) = [[C(t,1)](b),…,[C(t,z)](b)],  
  ∈ ⟨0,∞),  = 1,2, . . . ,  , 
 
representing the system conditional instantaneous 
operation costs in the safety state subsets  { , + 1, . . . ,  },  = 1,2, . . . ,  , at the system  
operation states   ,  = 1,2, . . . ,  , and   ,   = 1,2, . . . ,  , are the system operation process 
limit transient probabilities in the particular oper-
ation states (Grabski, 2015). Thus, it is naturally 
to assume that the system instantaneous operation 
cost depends significantly on the system operation 
state and the system operation cost at the opera-
tion state as well. This dependency is also clearly 
expressed in mean value of the system total oper-
ation cost  
 
C(⋅) = [C(1), C(2),…,C(z)], (10) 
 
with coordinates given by the linear equations 
  ( ) ≅    [ ( )]( ),     = 1,2, . . . ,  , (11) 
 
for the mean values of the system total uncondi-
tional operation costs in the safety state subsets { , + 1, . . . ,  },  = 1,2, . . . ,  , where C(t,u)](b),  = 1,2, . . . ,  ,  = 1,2, . . . ,  , are the mean values 
of the system total conditional operation costs  
in the safety state subsets { , + 1, . . . ,  },   = 1,2, . . . ,  , at the particular system operation 
states   ,  = 1,2, . . . ,  , determined by 
 [ ( )]( ) ≅ ∫ [ ( , )]( )[ ( )]( )   , (12) 
  = 1,2, . . . ,  ,  = 1,2, . . . ,  ,

 
 

where 
 [ ( )]( ) =   [ ( )]( ) , (13) 
  = 1,2, . . . ,  , 
 
are the mean values of the system conditional  
lifetimes [T(u)](b) in the safety state subset  { , + 1, . . . ,  } at the operation state   ,   = 1,2, . . . ,  , given by (Kołowrocki & Magryta, 
2020c; Kołowrocki & Soszyńska-Budny, 
2011/2015):  
 [ ( )]( ) =  [ ( , )]( )   ,    = 1,2, . . . ,  ,  
 
and [S(t,u)](b),  = 1,2, . . . ,  ,  = 1,2, . . . ,  , are 
the system safety function defined above and    
are limit transient probabilities defined in 
(Kołowrocki & Soszyńska-Budny, 2011/2015). 
 
3. System operation cost optimization 
 

3.1. System operation cost optimization model 
for fixed operation time  

 

From the linear equation (3) of the system opera-
tion cost model introduced in Section 2.1, we can 
see that the mean value of the system total uncon-
ditional operation cost  ( ),  > 0, is determined 
by the limit values of transient probabilities   ,  = 1,2, . . . ,  , of the system operation process at 
the operation states   ,  = 1,2, . . . ,  , defined by  
 
S(t,⋅) = [S(t,1), S(t,2), S(t,3)],  ∈ ⟨0,∞), (14) 
 
coordinate given by (Kołowrocki & Soszyńska-
Budny, 2011/2015) 
  ( , ) ≅   [ ( , )]( ),     (15) 
  ∈ ⟨0,∞),  = 1,2, . . . ,  ,  
 
where   ,  = 1,2, . . . ,  , are the limit transient 
probabilities of the system operation process at 
the operation states   ,  = 1,2, . . . ,  , and by the 
mean values [ ( )]( ),  > 0,  = 1,2, . . . ,  , of 
the system conditional operation total costs at  
the particular system operation states   ,   = 1,2, . . . ,  , determined by (6). Therefore, the 
system operation cost optimization based on the 
linear programming (Klabjan & Adelman, 2006), 
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can be proposed. Namely, we may look for the 
corresponding optimal values  ̇ ,  = 1,2, . . . ,  , 
of the limit transient probabilities   ,   = 1,2, . . . ,  , of the system operation process at 
the operation states to minimize the mean value 
C(θ) of the system unconditional operation total 
cost under the assumption that the mean values [ ( )]( ),  = 1,2, . . . ,  , of the system condi-
tional operation total costs at the particular system 
operation states   ,  = 1,2, . . . ,  , are fixed.  
Thus, we may formulate the optimization problem 
as a linear programming model with the objective 
function of the form given by (3) with the bound 
constraints 
  ̌ ≤   ≤  ̂ ,  = 1,2, … ,  ,   
  ∑       = 1, (16) 
 
where 
 [ ( )]( ), [ ( )]( ) ≥ 0, (17) 
  = 1,2, . . . ,  ,  
 
are fixed mean values of the system conditional 
operation total costs at the operation states   ,   = 1,2, . . . ,  , determined according to (6) and 
  ̌ , 0 ≤  ̌ ≤ 1 and  ̂ , 0 ≤  ̂ ≤ 1,  ̌ ≤  ̂ , 
  = 1,2, . . . ,  , (18) 
 
are lower and upper bounds of the unknown tran-
sient probabilities   , = 1,2, . . . ,  , respectively.  
Now, we can find the optimal solution of the for-
mulated by (3), (6), (16)–(18) the optimization  
problem, i.e. we can determine the optimal values  ̇ , of the transient probabilities   ,  = 1,2, . . . ,  , 
that minimize the objective function given by (3). 
The minimizing procedure is described in 
(Magryta-Mut, 2023).  
Finally, after applying this procedure, we can get 
the minimum value of the system unconditional 
operation total cost, defined by the linear equation 
(3), in the following form  
  ̇( ) =   ̇ [ ( )]( )    . (19) 
 
 

3.2. System operation cost optimization model 
in safety state subsets  

 

From the linear equations (8), we can see that the 
mean value of the system total unconditional op-
eration cost C(u),  = 1,2, . . . ,  , is determined by 
the limit values of transient probabilities   ,   = 1,2, . . . ,  , of the system operation process at 
the operation states   ,  = 1,2, . . . ,  , and by the  
mean values [C(u)](b). Therefore, the system oper-
ation cost optimization based on the linear pro-
gramming (Klabjan & Adelman, 2006), can be 
proposed. Namely, we may look for the corre-
sponding optimal values  ̇ ,  = 1,2, . . . ,  , of the 
transient probabilities   ,  = 1,2, . . . ,  , to mini-
mize the mean value C(u) under the assumption 
that the mean values [C(u)](b),  = 1,2, . . . ,  ,   = 1,2, . . . ,  , of the system total conditional  
operation costs in the safety state subsets  { ,  + 1, . . . ,  },  = 1,2, . . . ,  , at the particular 
system operation states   ,  = 1,2, . . . ,  , are 
fixed. As a special and practically important case 
of the above formulated system operation cost op-
timization problem for u = r, where if r,   = 1,2, . . . ,  , is a system critical safety state,  
we may look for the optimal values  ̇ ,   = 1,2, . . . ,  , of the transient probabilities   ,  = 1,2, . . . ,  , of the system operation process at 
the system operation states to minimize the mean 
value C(r),  = 1,2, . . . ,  , under the assumption 
that the mean values [C(r)](b),  = 1,2, . . . ,  ,   = 1,2, . . . ,  , are fixed. More exactly, we may 
formulate the optimization problem as a linear 
programming model (Klabjan & Adelman, 2006) 
with the objective function of the following form  
  ( ) ≅    [ ( )]( )    , (20) 
 
for a fixed r ∈{1,2,…,z} and with the following 
bound constraints 
  ̌ ≤   ≤  ̂ , b = 1,2,…,ν, 
 ∑   = 1,     (21) 
 
where 
 
[C(r)](b), [C(r)](b) ≥ 0,  = 1,2, . . . ,  , 
 
and 
  ̌ , 0 ≤  ̌ ≤ 1 and  ̂ , 0 ≤  ̂ ≤ 1,  ̌ ≤  ̂ ,  
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 = 1,2, . . . ,  , (22) 
 
are lower and upper bounds of the unknown  
transient probabilities   ,  = 1,2, . . . ,  , respec-
tively.  
Now, we can obtain the optimal solution of the 
linear programming problem given by (20)–(21), 
i.e. we can find the optimal values  ̇ , of the tran-
sient probabilities   ,  = 1,2, . . . ,  , that mini-
mize the objective function given by (20).  
We arrange the mean values of the system  
total conditional operation costs [C(r)](b),   = 1,2, . . . ,  , in non-decreasing order 
 [ ( )](  ) ≤ [ ( )](  ) ≤. . .≤ [ ( )](  ), 
 
where bi ∈{1,2,…,ν} for i = 1,2,…,ν. 
Next, we substitute  
   =    ,    =  ̌  ,    =  ̂   (23) 
 
for i = 1,2,…,ν, 
 
and we minimize with respect to   , i = 1, 2,…,ν, 
the linear form (20) that after this transformation 
takes the form 
  ( ) ≅    [ ( )](  ),    

 
(24) 

 
for a fixed r ∈{1,2,…,z} with  
    ≤   ≤    , i = 1,2,…,ν, ∑   = 1,     (25) 
 
where 
 [ ( )](  ), [ ( )](  ) ≥ 0, i = 1,2,…,ν, 
 
are arranged in non-decreasing order and  
    , 0 ≤    ≤ 1, and    , 0 ≤    ≤ 1,    ≤    ,  
 
i = 1,2,…,ν, (26) 
 
are lower and upper bounds of the unknown prob-
abilities   , i = 1,2,…,ν respectively.  
To find the optimal values of   , i = 1,2,…,ν, we 
define  
   = ∑    ,       = 1 −   , (27) 
 
and 

   = 0,    = 0 and    = ∑    ,        = ∑    ,      
 
for I = 1,2,…,ν. (28) 
 
Next, we find the largest value I∈{0,1,…,ν} such 
that  
    −    <    (29) 
 
and we fix the optimal solution that minimize (24) 
in the following way:  
i) if I = 0, the optimal solution is 
  ̇ =   +     and  ̇ =     for i = 2,3,…,ν, (30) 
 
ii) if 0 < I < ν, the optimal solution is  
  ̇ =     for i = 1, 2,…, I,  

  ̇   =   −    +    +        
 

and  ̇ =     for  =  + 2,  + 3, …,ν, (31) 
 
iii)  if I = ν, the optimal solution is  
  ̇ =     for i = 1,2,…,ν (32) 
 
Finally, after making the inverse to (23) substitu-
tion, we get the optimal limit transient probabili-
ties  
  ̇  =  ̇  for i = 1,2,…,ν (33) 
 
that minimize the mean value of the system total 
unconditional operation costs in the safety state 
subset { ,  + 1, . . . ,  }, defined by the linear form 
(27), giving its minimum value in the following 
form  
  ̇( ) ≅   ̇ [ ( )]( ),     (34) 
 
for a fixed r ∈{1,2,…,z}.  
From the expression (34) for the minimum mean 
value  ̇( ) of the system unconditional operation 
cost in the safety state subset { ,  + 1, . . . ,  }, re-
placing in it the critical safety state r by the safety 
state u,  = 1,2, . . . ,  , we obtain the correspond-
ing optimal solutions for the mean values of the 
system unconditional operation costs in the safety 
state subsets { ,  + 1, . . . ,  } of the form  
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 ̇( ) ≅   ̇ [ ( )]( ),     u = 1,2,…,z. (35) 
 
According to (10)–(11), the mean value of the sys-
tem optimal total operation cost can by expressed 
by 
  ̇(∙) =   ̇(1), … ,  ̇( ) ,

 
(36) 

 
with coordinates given by the linear equations 
(34) 
  ̇( ) ≅   ̇ [ ( )]( ),      = 1,2, . . . ,  ,

 
(37) 

 
for the mean values of the system optimal  
total unconditional operation costs in the safety 
state subsets { ,  + 1, . . . ,  },  = 1,2, . . . ,  , 
where[ ( )]( ),  = 1,2, . . . ,  ,  = 1,2, . . . ,  , 
are the mean values of the system total conditional 
operation costs in the safety state subsets  { ,  + 1, . . . ,  },  = 1,2, . . . ,  , at the particular 
system operation states   ,  = 1,2, . . . ,  , and  ̇ ,  = 1,2, . . . ,  , are the system operation process 
optimal limit transient probabilities at these oper-
ation states given by (33). 
The expressions for the optimal mean values of 
the system total operation costs in the particular 
safety states are  
   ̇( ) =  ̇( ) −  ̇( + 1), u = 1,2,…,z – 1,  
   ̇( ) =  ̇( ),

 
(38) 

 
where  ̇( ),  = 1,2, . . . ,  , are the optimal mean 
values of the system total unconditional operation 
costs in the safety state subsets { ,  + 1, . . . ,  },  = 1,2, . . . ,  , given by (35). 
 
4. Port oil terminal operation cost  
 

4.1. Terminal description  
 

The port oil terminal placed at the Baltic seaside 
is designated for receiving oil products from 
ships, storage and sending them by carriages or 
trucks to inland. Additionally, the terminal is ca-
pable of functioning in the opposite direction. A 
comprehensive description of the terminal can be 
found in (Kołowrocki & Soszyńska-Budny, 
2019a, 2019b). 
The terminal under consideration consists of three 
interconnected parts, namely A, B and C, linked 

by the piping transportation system with the pier. 
The estimated length of the oil transportation sys-
tem within the port, consisting of pipelines, 
amounts to approximately 25 km. 
The main technical assets (components) of the 
port oil terminal critical infrastructure are:  
A1 – port oil piping transportation system,  
A2 – internal pipeline technological system,  
A3 – supporting pump station,  
A4 – internal pump system,  
A5 – port oil tanker shipment terminal,  
A6 – loading railway carriage station,  
A7 – loading road carriage station,  
A8 – unloading railway carriage station,  
A9 – oil storage reservoir system.  
The asset A1, the port oil piping transportation sys-
tem operating at the port oil terminal critical in-
frastructure consists of three subsystems:  
• the subsystem S1 composed of two pipelines, 

each composed of 176 pipe segments and 2 
valves,  

• the subsystem S2 composed of two pipelines, 
each composed of 717 pipe segments and 2 
valves, 

• the subsystem S3 composed of three pipelines, 
each composed of 360 pipe segments and 2 
valves.  

Its operation is the main activity of the port oil ter-
minal involving the remaining assets A2 – A9.  
The port oil transportation system is a series sys-
tem composed of two series-parallel subsystems 
S1, S2, each containing two pipelines (assets) and 
one series – “2 out of 3” subsystem S3 containing 
3 pipelines (assets). 
The subsystems S1, S2 and S3 are forming a general 
series port oil transportation system safety struc-
ture presented in Figure 1. 
 

 S1 

 
S2 

 
S3 

 
A11 

A12 

A21 

A22 

A31 

A32 

A33 

 
 

Figure 1. The port oil piping transportation system 
safety structure. 
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4.2. Operation process 
 

We consider the port oil terminal critical infra-
structure impacted by its operation process.  
On the basis of the statistical data and expert opin-
ions, it is possible to fix and to evaluate the fol-
lowing unknown basic parameters of the oil ter-
minal critical infrastructure operation process. 
The number of operation process states ν = 7. We 
distinguish the following operation process states:  
• the operation state z1 – transport of one kind of 

medium from the terminal part B to part C us-
ing two out of three pipelines of the subsystem 
S3 of the asset A1 and assets A2, A4, A6, A7, A9,  

• the operation state z2 – transport of one kind of 
medium from the terminal part C to part B us-
ing one out of three pipelines of the subsystem 
S3 of the asset A1 and assets A2, A4, A8, A9, 

• the operation state z3 – transport of one kind of 
medium from the terminal part B through part 
A to pier using one out of two pipelines of the 
subsystem S1 and one out of two pipelines of 
the subsystem S2 of the asset A1 and assets A2, 
A4, A5, A9,  

• the operation state z4 – transport of one kind of 
medium from the pier through parts A and B to 
part C using one out of two pipelines of the 
subsystem S1, one out of two pipelines in sub-
system S2 and two out of three pipelines of the 
subsystem S3 of the asset A1 and assets A2, A3, 
A4, A5, A6, A7, A9,  

• the operation state z5 – transport of one kind of 
medium from the pier through part A to B using 
one out of two pipelines of the subsystem S1 and 
one out of two pipelines of the subsystem S2 of 
the asset A1 and assets A2, A3, A4, A5, A9,  

• the operation state z6 – transport of one kind of 
medium from the terminal part B to C using 
two out of three pipelines of the subsystem S3, 
and simultaneously transport one kind of me-
dium from the pier through part A to B using 
one out of two pipelines of the subsystem S1 
and one out of two pipelines of the subsystem 
S2 of the asset A1 and assets A2, A3, A4, A5, A6, 
A7, A9, 

• the operation state z7 – transport of one kind of 
medium from the terminal part B to C using 
one out of three pipelines of the subsystem S3, 
and simultaneously transport second kind of 
medium from the terminal part C to B using 
one out of three pipelines of the subsystem S3 
of the asset A1 and assets A2, A4, A6, A7, A8, A9.  

To identify the unknown parameters of the port oil 
piping transportation system operation process the 
suitable statistical data coming from its real reali-
zations should be collected. On the basic of this 
data (GMU, 2018), it is possible to estimate these 
parameters and to fix the port oil terminal charac-
teristics (Kołowrocki & Soszyńska-Budny, 
2011/2015): 
• the limit values of transient probabilities of the 

operation process Z(t) at the particular opera-
tion states   ,  = 1,2, . . . ,7: 
 
p1 = 0.395, p2 = 0.060, p3 = 0.003, p4 = 0.002, 
p5 = 0.20, p6 = 0.058, p7 = 0.282, (39) 

 
• the expected values of the total sojourn times    ,  = 1,2, . . . ,7, of the system operation pro-

cess at the particular operation states   ,   = 1,2, . . . ,7, during the fixed operation time  = 1 year = 365 days:  
   =       = 0.395 year = 144.175 days,    =       = 0.060 year = 21.9 days,   =       = 0.003 year = 1.095 days,    =       = 0.002 year = 0.73 days,    =       = 0.20 year = 73 days,    =       = 0.058 year = 21.17 days,    =       = 0.282 year = 102.93 days.  
 (40) 

 
4.3. Operation cost for fixed operation time 
 

The port oil terminal critical infrastructure opera-
tion process Z(t) main characteristics are the limit 
values of transient probabilities of the operation 
process Z(t) at the particular operation states   ,  = 1,2, . . . ,7, (Kołowrocki & Soszyńska-Budny, 
2011/2015; Magryta, 2020).  
The asset A1, the port oil terminal system is com-
posed of 2880 components and the number of the 
system components operating at the various oper-
ation states, are different. Namely, there are oper-
ating 1086 system components at the operation 
states z1, z2 and z7, 1794 system components at the 
operation states z3 and z5, 2880 system compo-
nents at the operation states z4 and z6. 
According to the information coming from ex-
perts, the approximate value of the instantaneous 
operation cost of the single basic component of 
the asset A1 used during the operation time inter-
val of  = 1 year at the operation state   ,  
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 = 1,2, . . . ,7, is constant and amounts 9.6 PLN,  ∈ 〈0, 1〉, b = 1,2,…,7, whereas, the cost of each 
its singular basic component that is not used is 
equal to 0 PLN.  
Hence, the number of components in a subsystems 
S1, S2, S3 and their use at particularly operation 
states imply that the asset A1 conditional instanta-
neous operation costs [C1(t)](b),  ∈ 〈0, 〉,   = 1,2, . . . ,7, introduced by (2), are:  
 
[C1(t)](1) = 1086·9.6 = 10425.6,  
[C1(t)](2) = 1086·9.6 = 10425.6, 
[C1(t)](3) = 1794·9.6 = 17222.4,  
[C1(t)](4) = 2880·9.6 = 27648, 
[C1(t)](5) = 1794·9.6 = 17222.4,  
[C1(t)](6) = 2880·9.6 = 27648, 
[C1(t)](7) = 1086·9.6 = 10425.6. (41) 
 
Applying the formula (40) and (41), we get  
the approximate mean values [C1(θ)](b),   = 1,2, . . . ,7, of the asset A1 conditional opera-
tion total costs at the operation state   ,   = 1,2, . . . ,7, during the operation time   = 1 year: 
 [   ( )]( ) = 144.175·10425.6 = 1503110.88, [   ( )]( ) = 21.9·10425.6 = 228320.64, [   ( )]( ) = 1.095·17222.4 = 18858.528, [   ( )]( ) = 0.73·27648 = 20183.04, [   ( )]( ) = 73·17222.4 = 1257235.2, [   ( )]( ) = 21.17·27648 = 585308.16, [   ( )]( ) = 102.93·10425.6 = 1073107.008. 
 (42) 
 
The corresponding mean values of the total con-
ditional operation costs for the remaining assets 
A2 – A9, during the operation time θ = 1 year, as-
sumed arbitrarily (we do not have data at the mo-
ment) equal to 10000 PLN, in all operation states 
if they are used and equal to 0 PLN if they are not 
used. Under this assumption, considering the pro-
cedure of using assets A2 – A9 at particular opera-
tion states and the total operation costs of asset A1 
given in (42), we fix the total costs of the entire 
port oil terminal at the particular operation states   ,  = 1,2, . . . ,7, (Magryta-Mut, 2023), given by: 
 [  ( )]( ) = 3805344 + 50000 = 3855344,  [  ( )]( ) = 3805344 + 40000 = 3845344, [  ( )]( ) = 6286176 + 40000 = 6326176,  [  ( )]( ) = 10091520 + 70000 = 10161520, 

[  ( )]( ) = 6286176 + 50000 = 6336176,  [  ( )]( ) = 10091520 + 70000 = 10161520, [  ( )]( ) = 3805344 + 60000 = 3865344.  (43) 
 
Considering the values of the total costs [   ( )]( ),  = 1,2, . . . ,7, from (113) and the val-
ues of transient probabilities   ,  = 1,2, . . . ,7, 
given by (39), the port oil terminal total operation 
mean cost during the operation time θ = 1 year is 
given by  
    ( ) ≅       ( ) ( ) +      ( ) ( ) +      ( ) ( ) +      ( ) ( ) +      ( ) ( ) +      ( ) ( ) +      ( ) ( ) ≅ 4739513.456 PLN. 

 (44) 
 

4.4. Operation cost in safety state subsets 
 

The number of components in a subsystems S1, S2, 
S3 and their use at particularly operation states, the 
asset A1 conditional instantaneous operation costs 
[C(t,u)](b), u = 1, 2,  = 1,2, . . . ,7, in the safety 
state subsets {1,2}, {2} for  ∈ ⟨0,∞),   = 1,2, . . . ,7, expressed in PLN, are: 
 
[C1(t,1)](1) = [C1(t,2)](1) = 1086·9.6 = 10425.6,  
[C1(t,1)](2) = [C1(t,2)](2) = 1086·9.6 = 10425.6, 
[C1(t,1)](3) = [C1(t,2)](3) = 1794·9.6 = 17222.4,  
[C1(t,1)](4) = [C1(t,2)](4) = 2880·9.6 = 27648, 
[C1(t,1)](5) = [C1(t,2)](5) = 1794·9.6 = 17222.4,  
[C1(t,1)](6) = [C1(t,2)](6) = 2880·9.6 = 27648, 
[C1(t,1)](7) = [C1(t,2)](7) = 1086·9.6 = 10425.6.
 (45) 
 
The mean values [µ(u)](b) ,  = 1,2, of the termi-
nal conditional lifetimes [T(u)](b),  = 1,2, in the 
safety state subset {1,2}, {2} at the operation state   ,  = 1,2, . . . ,7, determined in Section 3, respec-
tively (expressed in years) are: 
 
[µ(1)](1) ≅ 8.08342,  
[µ(1)](2) ≅ 8.16593,  
[µ(1)](3) = [µ(1)](5) ≅ 7.60179, 
[µ(1)](4) = [µ(1)](6) ≅ 6.80805,  
[µ(1)](7) ≅ 8.00256, 
[µ(2)](1) = 5.15695,  
[µ(2)](2) = 5.21069,  
[µ(2)](3) = [µ(2)](5) ≅ 4.85232, 
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[µ(2)](4) ≅ 4.34292,  
[µ(2)](6) ≅ 4.3429,  
[µ(2)](7) ≅ 5.10431. (46) 
 
Applying the formula (45) and (46) we get the ap-
proximate mean values [C1(1)](b),  = 1,2, . . . ,7, 
of the total costs of the entire port oil terminal at 
the particular operation states given by: 
 
[C1(1)](1) = 8.08342·10425.6 ≅ 84274.50355,  
[C1(1)](2) = 8.16593·10425.6 ≅ 85134.71981, 
[C1(1)](3) = 7.60179·17222.4 ≅ 130921.06810,  
[C1(1)](4) = 6.80805·27648≅ 188228.9664, 
[C1(1)](5) = 7.60179·17222.4 ≅ 130921.06810,  
[C1(1)](6) = 6.80805·27648 ≅ 188228.96640, 
[C1(1)](7) = 8.00256·10425.6 ≅ 83431.48954, 
 (47) 
 
in the safety state subset {1,2} and 
 
[C1(2)](1) = 5.15695·10425.6 ≅ 53764.29792,  
[C1(2)](2) = 5.21069·10425.6 ≅ 54324.56966, 
[C1(2)](3) = 4.85232·17222.4 ≅ 83568.59597,  
[C1(2)](4) = 4.34292·27648 ≅ 120073.05216, 
[C1(2)](5) = 4.85232·17222.4 ≅ 83568.59597,  
[C1(2)](6) = 4.3429·27648 ≅ 120072.49920, 
[C1(2)](7) = 5.10431·10425.6 ≅ 53215.49434, 
 (48) 
 
in the safety state subset {2}.  
The corresponding mean values of the total con-
ditional operation costs for the remaining assets 
A2 – A9, we assume arbitrarily (we do not data at 
the moment) equal to 10000 PLN, in all operation 
states if they are used and equal to 0 PLN if they 
are not used. Under this assumption, considering 
the procedure of using asset A2 – A9 at particular 
operation state and the total cost of asset A1 given 
in (47) and (48), we fix the total costs of the entire 
port oil terminal at the particular operation states 
given by: 
 
[C1(1)](1) = 84274.50355 + 50000  

= 134274.50355, 
[C1(1)](2) = 85134.71981 + 40000 

= 125134.71981, 
[C1(1)](3) = 130921.06810 + 40000  

= 170921.06810, 
[C1(1)](4) = 188228.9664 + 70000  

= 258228.9664, 
[C1(1)](5) = 130921.06810 + 50000  

= 180921.06810, 
[C1(1)](6) = 188228.96640 + 70000  

= 258228.96640, 
[C1(1)](7) = 83431.48954 + 60000  

= 143431.48954, (49) 
 
in the safety state subset {1,2} and 
 
[C1(2)](1) = 53764.29792 + 50000  

= 103764.29792, 
[C1(2)](2) = 54324.56966 + 40000  

= 94324.56966, 
[C1(2)](3) = 83568.59597 + 40000  

= 123568.59597, 
[C1(2)](4) = 120073.05216 + 70000  

= 190073.05216, 
[C1(2)](5) = 83568.59597 + 50000  

= 133568.59597, 
[C1(2)](6) = 120072.49920 + 70000  

= 190072.49920, 
[C1(2)](7) = 53215.49434 + 60000  

= 113215.49434, (50) 
 
in the safety state subset {2}. 
Considering the values of [C(u)](b),  = 1,2,   = 1,2, . . . ,7, from (49)–(50) and the values of 
transient probabilities   , b = 1,2,…,7, the port oil 
terminal total unconditional operation cost is 
given by 
 
C(1) ≅ p1[C(1)](1) + p2[C(1)](2) + p3[C(1)](3)  

+ p4[C(1)](4) + p5[C(1)](5) + p6[C(1)](6)  
+ p7[C(1)](7)  
≅ 0.395⋅134274.50355 
+ 0.06⋅125134.71981 
+ 0.003⋅170921.06810  
+ 0.02⋅258228.9664  
+ 0.2⋅180921.06810  
+ 0.058⋅258228.96640  
+ 0.282⋅143431.48954  
≅ 153184.90695 PLN, (51) 

 
in the safety state subset {1,2} and 
 
C(2) ≅ p1[C(2)](1) + p2[C(2)](2) + p3[C(2)](3)  

+ p4[C(2)](4) + p5[C(2)](5) + p6[C(2)](6)  
+ p7[C(2)](7)  
≅ 0.395⋅103764.29792  
+ 0.06⋅94324.56966  
+ 0.003⋅123568.59597 
+ 0.002⋅190073.05216 
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+ 0.2⋅133568.59597  
+ 0.058⋅190072.49920  
+ 0.282⋅113215.49434  
≅ 117061.91730 PLN, (52) 

 
in the safety state subset {2}. 
 
5. Port oil terminal operation cost  

optimization  
 

5.1. Operation cost optimization model for 
fixed operation time 

 

Considering (39) to find the minimum value of the 
port oil terminal mean cost, we define the objec-
tive function given by (3), in the following form  
  ( ) = p1⋅3855344 + p2⋅3845344 

+ p3⋅6326176 + p4⋅10161520 
+ p5⋅6336176+ p6⋅10161520 
+ p7⋅3865344.  (53) 
 

The lower  ̌  and upper  ̂  bounds of the un-
known optimal values of transient probabilities   , = 1,2, . . . ,7, respectively are (Magryta, 
2020):  
  ̌  = 0.31,  ̌  = 0.04,  ̌  = 0.002,  ̌  = 0.001,   ̌  = 0.15,  ̌  = 0.04,  ̌  = 0.25, 
  ̂  = 0.46,  ̂  = 0.08,  ̂  = 0.006,  ̂  = 0.004,   ̂  = 0.26,  ̂  = 0.08,  ̂  = 0.40.  (54) 
 
Therefore, according to (16)–(17), we assume the 
following bound constraints  
 
0.31 ≤    ≤ 0.46, 0.04 ≤    ≤ 0.08,  
0.002 ≤    ≤ 0.006, 0.001 ≤    ≤ 0.004,  
0.15 ≤    ≤ 0.26, 0.04 ≤    ≤ 0.08,  
0.25 ≤    ≤ 0.40, ∑   = 1    . (55) 
 
Now, before we find optimal values  ̇  of the tran-
sient probabilities   , = 1,2, . . . ,7, that mini-
mize the objective function (53), we arrange the 
mean values of the port oil terminal conditional 
operation costs [ ( )]( ),  = 1,2, . . . ,7, in non-
decreasing order  
 
3845344 ≤ 3845344 ≤ 3845344 ≤ 6326176  
≤ 6336176 ≤ 10161520 ≤ 10161520, 
 
i.e. 

   ( ) ( ) ≤    ( ) ( ) ≤    ( ) ( ) ≤   ( ) ( ) ≤    ( ) ( ) ≤    ( ) ( ) ≤    ( ) ( )
.  

 (56) 
 
Further, we substitute  
    =   ,    =   ,    =   ,    =   ,     =   ,    =   ,    =   , (57) 
 
and 
    =  ̌ = 0,04,    =  ̌ = 0,31,     =  ̌ = 0,25,    =  ̌ = 0,002,    =  ̌ = 0,15,    =  ̌ = 0,001,    =  ̌ = 0,04, 
    =  ̂ = 0,08,    =  ̂ = 0,46,    =  ̂ = 0,40,    =  ̂ = 0,006,    =  ̂ = 0,26,    =  ̂ = 0,004,    =  ̂ = 0,08, (58) 
 
and we minimize with respect to   ,  = 1,2, . . . ,7, 
the linear form (53) which takes the form  
   ( ) =   ⋅ 3845344 +   ⋅ 3855344          +   ⋅ 3865344 +   ⋅ 6326176 
        +   ⋅ 6336176 +   ⋅ 10161520 
        +   ⋅ 10161520 (59) 
 
with the following bound constraints  
 
0.04 ≤    ≤ 0.08, 0.31 ≤    ≤ 0.46, 
0.25 ≤    ≤ 0.40, 0.002 ≤    ≤ 0.006, 
0.15 ≤    ≤ 0.26, 0.001 ≤    ≤ 0.004, 
0.04 ≤    ≤ 0.08, ∑   = 1    . (60) 
 
We calculate 
   = ∑        = 0.793,    = 1 −   = 1 − 0.793 = 0.207  (61) 
 
and we find     = 0,    = 0,    −     = 0,    = 0.04,    = 0.08,    −     = 0.04,     = 0.35,    = 0.54,    −     = 0.19,     = 0.06,    = 0.94,    −     = 0.34,     = 0.602,    = 0.946,    −     = 0.344,     = 0.752,    = 1.206,    −     = 0.454,     = 0.753,    = 1.21,    −     = 0.457,     = 0.793,    = 1.29,    −     = 0.497.  (62) 
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From the above, since the expression takes the 
form  
    −    < 0.207, (63) 
 
then it follows that the largest value  
I ∈{0,1,…,7} such that this inequality holds is 
I = 5. Therefore, we fix the optimal solution that 
minimize linear function (53). Namely, we get  
  ̇ =    = 0.08,  ̇ =    = 0.46,   ̇ =   −    +    +     = 0.207 − 0.54 + 0.35 + 0.25 = 0.267,  ̇ =    = 0.002,  ̇ =    = 0.15,  ̇ =    = 0.001,  ̇ =    = 0.04. (64) 
 
Finally, after making the substitution inverse to 
(57), we get the optimal transient probabilities 
  ̇ =  ̇ = 0.08,  ̇ =  ̇ = 0.46,   ̇ =  ̇ = 0.267,  ̇ =  ̇ = 0.002,   ̇ =  ̇ = 0.15,  ̇ =  ̇ = 0.001,   ̇ =  ̇ = 0.04.  (65) 
 
that minimize the mean value of the port oil ter-
minal operation total cost C(θ) during the opera-
tion time  = 1 year, expressed by the linear form 
(115) and considering (44), its minimal value is  
  ̇( ) ≅ 0.46⋅3855344 + 0.08⋅3845344 

+ 0.002⋅6326176 + 0.001⋅10161520 
+ 0.15⋅6336176 + 0.04⋅10161520 
+ 0.267⋅3865344 ≅ 4 492 833.68 PLN. (66) 
 

5.2. Cost optimization model in safety state 
subsets 

 

Assuming the critical safety state r = 1 and con-
sidering (49) to find the minimum value of this 
cost, we define the objective function given by 
(20), in the following form 
 
C(1) ≅ p1[C(1)](1) + p2[C(1)](2) + p3[C(1)](3)  

+ p4[C(1)](4) + p5[C(1)](5) + p6[C(1)](6)  
+ p7[C(1)](7) 

≅ p1⋅134274.50355 + p2⋅125134.71981 
+ p3⋅170921.06810 + p4⋅258228.9664  
+ p5⋅180921.06810 + p6⋅258228.96640  
+ p7⋅143431.48954. (67) 

 

The lower  ̌  and upper  ̂  bounds of the un-
known optimal values of transient probabilities pb,  = 1,2, . . . ,7, respectively are (Kołowrocki & 
Soszyńska-Budny, 2011/2015):  
  ̌  = 0.31,  ̌  = 0.04,  ̌  = 0.002,  ̌  = 0.001,   ̌  = 0.15,  ̌  = 0.04,  ̌  = 0.25, 
  ̂  = 0.46,  ̂  = 0.08,  ̂  = 0.006,  ̂  = 0.004,   ̂  = 0.26,  ̂  = 0.08,  ̂  = 0.40. (68) 
 
Therefore, according to (21)–(22), we assume the 
following bound constraints  
 
0.31 ≤    ≤ 0.46, 0.04 ≤    ≤ 0.08,  
0.002 ≤    ≤ 0.006, 0.001 ≤    ≤ 0.004,  
0.15 ≤    ≤ 0.26, 0.04 ≤    ≤ 0.08,  
0.25 ≤    ≤ 0.40, ∑   = 1    . (69) 
 
Now, before we find optimal values  ̇  of the tran-
sient probabilities   , = 1,2, . . . ,7, that mini-
mize the objective function (56), we arrange the 
mean values of the port oil terminal conditional 
operation costs [C(1)](b),  = 1,2, . . . ,7, deter-
mined by (49), in non-decreasing order 
 
125134.71981 ≤ 134274.50355  
≤ 143431.48954 ≤ 170921.06810  
≤ 180921.06810 ≤ 258228.96640  
≤ 2588228.9664, 
 
i.e. 
 [ (1)]( ) ≤ [ (1)]( ) ≤ [ (1)]( ) ≤[ (1)]( ) ≤ [ (1)]( ) ≤ [ (1)]( ) ≤ [ (1)]( ),
 (70) 
 
Further, we substitute  
    =   ,    =   ,    =   ,    =   ,     =   ,    =   ,    =   , (71) 
and 
    =  ̌ = 0,04,    =  ̌ = 0,31,     =  ̌ = 0,25,    =  ̌ = 0,002,    =  ̌ = 0,15,    =  ̌ = 0,001,    =  ̌ = 0,04, 
    =  ̂ = 0,08,    =  ̂ = 0,46,    =  ̂ = 0,40,    =  ̂ = 0,006,    =  ̂ = 0,26,    =  ̂ = 0,004,    =  ̂ = 0,08, (72) 
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and we minimize with respect to   ,  = 1,2, . . . ,7, 
the linear form (67) that according to (23)–(24) 
and (70)–(71) takes the form  
 
C(1) = x1⋅125134.71981 + x2⋅134274.50355  

+ x3⋅143431.48954 + x4⋅170921.06810  
+ x5⋅180921.06810 + x6⋅258228.9664  
+ x7⋅258228.9664, (73) 

 
with the following bound constraints  
 
0.04 ≤    ≤ 0.08, 0.31 ≤    ≤ 0.46, 
0.25 ≤    ≤ 0.40, 0.002 ≤    ≤ 0.006, 
0.15 ≤    ≤ 0.26, 0.001 ≤    ≤ 0.004, 
0.04 ≤    ≤ 0.08, ∑   = 1    . (74) 
 
We calculate 
   = ∑        = 0.793,    = 1 −   = 1 − 0.793 = 0.207 (75) 
 
and we find  
    = 0,    = 0,    −     = 0,    = 0.04,    = 0.08,    −     = 0.04,     = 0.35,    = 0.54,    −     = 0.19,     = 0.06,    = 0.94,    −     = 0.34,     = 0.602,    = 0.946,    −     = 0.344,     = 0.752,    = 1.206,    −     = 0.454,     = 0.753,    = 1.21,    −     = 0.457,     = 0.793,    = 1.29,    −     = 0.497.  (76) 
 
From the above, since the expression (29) takes 
the form  
    −    < 0.207, (77) 
 
then it follows that the largest value I∈{0,1,…,7} 
such that this inequality holds is I = 2. Therefore, 
we fix the optimal solution that minimize linear 
function (67). Namely, we get  
  ̇ =    = 0.08,  ̇ =    = 0.46,   ̇ =   −    +    +     = 0.207 − 0.54 + 0.35 + 0.25 = 0.267,  ̇ =    = 0.002,  ̇ =    = 0.15,  ̇ =    = 0.001,  ̇ =    = 0.04. (78) 
 
Finally, after making the substitution inverse to 
(23), we get the optimal transient probabilities 
 

 ̇ =  ̇ = 0.08,  ̇ =  ̇ = 0.46,   ̇ =  ̇ = 0.267,  ̇ =  ̇ = 0.002,   ̇ =  ̇ = 0.15,  ̇ =  ̇ = 0.001,   ̇ =  ̇ = 0.04. (79) 
 
that minimize the mean value of the port oil ter-
minal total operation cost C(1) expressed by the 
linear form (67), its optimal value in the safety 
state subset {1,2} is  
  ̇(1) ≅ 0.46⋅134274.50355  

+ 0.08⋅125134.71981 
+ 0.002⋅170921.06810  
+ 0.001⋅258228.9664 
+ 0.15⋅180921.06810  
+ 0.04⋅258228.96640 
+ 0.267⋅143431.48954  
≅ 148140.64690 PLN, (80) 

 
and further, the optimal mean value of the port oil 
terminal operation total cost in the safety state 
subset {2} is 
 

)2(C& ≅ 0.46⋅103764.29792 
+ 0.08⋅94324.56966  
+ 0.002⋅123568.59597  
+ 0.001⋅190073.05216  
+ 0.15⋅133568.59597  
+ 0.04⋅190072.49920 
+ 0.267⋅113215.49434  
≅ 113581.47921 PLN. (81) 

 
Hence, and according to (38), the optimal values 
of the port oil terminal total operation costs in the 
particular safety states 1 and 2, respectively are:  
  ̅̇(1) ≅148140.64690 – 113581.47921  

= 34559.16769,   ̅̇(2) ≅113581.47921. (82) 
 
The analyzed costs after optimization are lower 
than before it, what is respectively expressed by 
comparison of the results before the optimization 
given in (51)–(52) and the results after the optimi-
zation given in (80)–(81).  
 
6. Conclusion 
 

To embark on this scientific topic, it is essential to 
understand the intricate nature of complex multi-
state ageing technical systems. These systems are 



  
Port oil terminal operation cost optimization 

 
143 

 

characterized by their gradual degradation over 
time, varying operation states, and changing 
safety requirements. As components age, their 
performance may decline, necessitating mainte-
nance, repairs, or replacement to ensure continued 
functionality and safety. 
In the realm of cost optimization, the challenges 
associated with multistate ageing technical sys-
tems are twofold. Firstly, there is a need to mini-
mize operation costs while considering the dy-
namic nature of the systems. Unlike static sys-
tems, multistate ageing technical systems demand 
adaptive strategies that account for the transitions 
between operation states and their associated 
costs. Secondly, safety considerations cannot be 
compromised during cost optimization. Ensuring 
the integrity and reliability of these systems is par-
amount to prevent catastrophic failures, accidents, 
and potential environmental hazards (Bogalecka, 
2020; Dąbrowska & Kołowrocki, 2019a, 2019b, 
2020a, 2020b). 
The integration of system operation cost models 
and multistate system safety models offers a com-
prehensive approach to address these challenges. 
By incorporating the impact of operation process 
on both cost and safety, a holistic understanding 
of the system's performance and its optimization 
potential is achieved. This joint model enables de-
cision makers to strike a balance between cost re-
duction and safety enhancement, ultimately driv-
ing sustainable and efficient operations. 
The application of the proposed cost optimization 
procedure (Gouldby et al., 2010; Habibullah et al., 
2009; Kołowrocki & Magryta, 2020a, 2020c; 
Kołowrocki et al., 2016; Lauge et al., 2015; 
Magryta-Mut, 2022) extends beyond theoretical 
realms. Real-world example, such as port oil ter-
minals exemplify the practical significance of this 
research. These complex technical systems, sub-
ject to varying operation and safety states, demand 
sophisticated strategies for cost reduction without 
compromising safety standards. The findings of 
this study provide valuable in-sights and practical 
guidelines for industries operating within such 
critical infrastructures. By fostering further re-
search and development, this study contributes to 
the advancement of efficient and economically 
sustainable industrial practices in the face of com-
plex multistate ageing technical systems. 
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