PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal stability of nanoscale oxides and carbides of W and Zr in Cu-Al-Fe alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to discover phases evolution of nanoscale tungsten, zirconium oxides and carbides during heating up to 1200°C in contact with the copper alloy CuAl8Fe3. Design/methodology/approach: The main investigation methods are X-ray phase analysis and thermal analysis. The X-ray phase analysis is done by automated X-ray diffractometer DRON-3.0 with cobalt anode, the thermal analysis is done with synchronous thermal analyser STA 449F1 Jupiter (NETZSCH). Findings: The initial interactions’ temperatures for the carbides and oxides with copper alloy CuAl8Fe3, also temperatures of isomorphic and polymorphic transitions are discovered. Comparative thermal analysis of the nanoscale powders reveals carbides are more stable in air and inert gas (argon) versus oxides ones. Research limitations/implications: Intermediate phase transitions during heating and cooling are predicted on the base of known thermodynamic data and scientific reports, X-ray phase analysis is performed only for initial and result material before and after heat treatment. Practical implications: Obtained data allows developing effective technological consolidation regimes of ESD nanoscale zirconium, tungsten carbides and oxides with cuprum-based alloys for wear and heat resistant composite materials production. Originality/value: The paper exposes new thermal data of isomorphic and polymorphic transformations for zirconium, tungsten carbides and oxides nanoscale powders obtained by ESD and their interactions with copper CuAl8Fe3 alloy in temperature range: 25-1200°C.
Słowa kluczowe
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Physico-Technological Institute of Metals and Alloys of NAS of Ukraine, 34/1 Vernadskogo ave., Kyiv, Ukraine
  • Physico-Technological Institute of Metals and Alloys of NAS of Ukraine, 34/1 Vernadskogo ave., Kyiv, Ukraine
  • Physico-Technological Institute of Metals and Alloys of NAS of Ukraine, 34/1 Vernadskogo ave., Kyiv, Ukraine
Bibliografia
  • [1] J.P. Stobrawa, Z.M. Rdzawski, Thermal stability of functional propertiesin dispersion and precipitation hardened selected copper alloys, Archives of Materials Science and Engineering 30/1 (2008) 17-20.
  • [2] M. Czepelak, M. Staszewski, A. Wrona, M. Lis, M. Osadnik, Fabrication of nano-structured materials by high-pressure sintering, Archives of Materials Science and Engineering 30/2 (2008) 109-112.
  • [3] O.A. Scheretskyj, Usage of combined differential-thermal analysis for investigations of the low-intensity thermal effects in alloys, Metaloznavstvo ta obrobka metaliv 3(2012) 50-54.
  • [4] V. Raghavan, Al-Cu-Fe (Aluminum-Copper-Iron), Journal of Phase Equilibria and Diffusion 31/5 (2010) 449-452.
  • [5] M. Spittel, T. Spittel, Flow stress, mechanical and physical properties of CuAl18Fe3, in: H. Warlimont (Ed.), Part 3: Non-ferrous Alloys – Heavy Metals. Advanced Materials and Technologies 2C3, Springer, Berlin, Heidelberg, 2016, 342-346.
  • [6] P.J. Desre, A thermodynamic model for the nanocrystal to glass transition of intermetallic compounds subjected to high deformation by mechanical attrition - Application to L12 phases, Nanostructured Materials 8 (1997) 687-701.
  • [7] S. Kazuhiro, U. Shohei, Research and development on HTGR fuel in the HTTR project, Nuclear Energineering and Design 233/1-3 (2004) 163-172.
  • [8] M. Scendo, N. Radek, J. Trela, Influence of Laser Treatment on the Corrosive Resistance of WC-Cu Coating Produced by Electrospark Deposition, International Journal of Electrochemical Science 8 (2013) 9264-9277.
  • [9] C.-J. Li, A. Ohmori, Y. Harada, Effect of powder structure on the structure of thermally sprayed WC-Co coating, Journal of Materials Science 31/3 (1996) 785-794.
  • [10] B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, Journal of Solid State Chemistry 29/3 (1979) 429-434.
  • [11] E.K.H. Salje, S. Rehmann, F. Pobell, D. Morris, K.S. Knight, T. Herrmannsdorefer, M.T. Dove, Crystal structure and paramagnetic behavior of -WO3-x, Journal of Physics. Condensed Matter 9 (1997) 6563-6577.
  • [12] T. Vogt, P.M. Woodward, B.A. Hunter, The High-Temperature Phases of WO3, Journal of Solid State Chemistry 144/1 (1999) 209-215.
  • [13] M. Yang, N.K. Shrestha, P. Schmuki, Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte, Electrochemistry Communications 11 (2009) 1908-1911.
  • [14] K.V. Chuistov, A.P. Shpak, A.E. Perekos, Small metal particles: production methods, atomic and electronic structure, magnetic properties and practical usage Uspehi Fiziki Metallov (2003) 235-269.
  • [15] A.S. Zatulovskyi, V.O. Scheretskyi, Metalmatrix composite materials armed with nanosized particles, Nanorozmirni sistemi: budova, vlastivosti, tehnologiyi NANSYS-2016 (01-02/12/2016), Kyiv, Theses V Science Conference edited by A.G. Naumovets, 88 (in Ukrainian).
  • [16] G. Teufer, The crystal structure of tetragonal ZrO, Acta Crystallographica 5 (1962) 1187.
  • [17] P.A. Evans, R. Stevens, J.G.P. Binner, Quantitative X-ray diffraction analysis of polymorphic mixes of pure zirconia, Transactions and Journal of the British Ceramic Society 83/2 (1984) 39-43.
  • [18] A.Y. Liu, R.M. Wentzcovitch, M.L. Cohen, Structural and electronic properties of WC, Physical Review B 38 (1989) 9483-9489.
  • [19] F.B. Baker, E.K. Storms, C.E. Holley Enthalpy of formation of zirconium carbide, Journal of Chemical & Engineering Data 14/2 (1969) 244-246.
  • [20] D.K. Smith, C.F. Cline, An X-Ray Investigation of Polymarphism in ZrC, Journal of the American Ceramic Society 46 (1963) 566-566.
  • [21] R.W. Harrison, W.E. Lee, Processing and properties of ZrC, ZrN and ZrCN ceramics: a review, Advances in Applied Ceramics 115/5 (2016) 294-307.
  • [22] L.A. Dobrzański, B. Dołżańska, G. Matula, Structure and properties of tool gradient materials, Archives of Materials Science and Engineering 28/1 (2008) 35-38.
  • [23] E. Hong, B. Kaplin, T. You, M.-s. Suh, Y.-S. Kim, H. Choe, Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles, Wear 270/9-10 (2011) 591-597.
  • [24] A.V. Ragulya Consolidation of ceramic nanopowders, Advances in Applied Ceramics 107/3 (2008) 118-134.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ca00b686-9e9a-47d4-a154-d10e3ddc6941
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.