Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For h : (0,∞) → R, the function h* (t) := th( 1/t ) is called (*)-conjugate to h. This conjugacy is related to the Hölder and Minkowski inequalities. Several properties of (*)-conjugacy are proved. If φ and φ* are bijections of (0,∞) then [formula]. Under some natural rate of growth conditions at 0 and ∞, if φ is increasing, convex, geometrically convex, then [formula] has the same properties. We show that the Young conjugate functions do not have this property. For a measure space (Ω,Σ,μ) denote by S = (Ω,Σ,μ) the space of all μ-integrable simple functions x : Ω → R, Given a bijection φ : (0,∞) → (0,∞) define [formula] by [formula] where Ω(x) is the support of x. Applying some properties of the (*) operation, we prove that if ƒ xy ≤ Pφ(x)Pψ (y) where [formula] and [formula] are conjugate, then φ and ψ are conjugate power functions. The existence of nonpower bijections φ and ψ with conjugate inverse functions [formula] such that Pφ and Pψ are subadditive and subhomogeneous is considered.
Słowa kluczowe
Lp-norm like functional
homogeneity
subhomogeneity
subadditivity
Minkowski inequality
Hölder inequality
converses
generalization of the Minkowski and Hölder inequalities
conjugate functions
complementary functions
Young conjugate functions
convex function
geometrically convex function
Wright convex function
functional equation
Czasopismo
Rocznik
Tom
Strony
523--560
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- University of Zielona Góra Faculty of Mathematics, Computer Science and Econometrics ul. Szafrana 4a, 65-516 Zielona Góra, Poland
- Silesian University Institute of Mathematics ul. Bankowa 14, 40-007 Katowice, Poland
Bibliografia
- [1] G. Aumann, Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelwerten, S.-B. Math.-Naturw. Abt. Bayer. Akad. Wiss. München, (1933), 405–413.
- [2] Z. Dároczy, Zs. Páles, Convexity with given infinite weight sequences, Stochastica 11 (1987), 5–12.
- [3] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 2nd ed., 1952.
- [4] E. Hille, R.S. Phillips, Functional Analysis and Semigrops, American Mathematical Society Publications 31, A.M.S., Providence, R.I., 1957.
- [5] W. Jarczyk, J. Matkowski, On Mulholland’s inequality, Proc. Amer. Math. Soc. 130 (2002), 3243–3247.
- [6] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy’s Equation and Jensen’s Inequality, P.W.N, Uniwersytet Slaski, Warszawa-Kraków-Katowice, 1985.
- [7] J. Matkowski, On a characterization of Lp-norm, Ann. Polon. Math. 50 (1989), 137–144.
- [8] J. Matkowski, The converse of the Minkowski’s inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663–675.
- [9] J. Matkowski, A functional inequality characterizing convex functions, conjugacy and a generalization of Hölder’s and Minkowski’s inequalities, Aequationes Math. 40 (1990), 168–180.
- [10] J. Matkowski, A generalization of Hölder’s and Minkowski’s inequalities and conjugate fubctions, Constantin Carathéodory: An International Tribute, Th.M. Rassias (Ed.), 1991 World Scientific Publ. Co., 819-827.
- [11] J. Matkowski, Functional inequality characterizing concave functions in (0,1)k, Aequationes Math. 43 (1992), 219–224.
- [12] J. Matkowski, Lp-like paranorms, in Selected Topics in Functional Equations and Iteration
- Theory, Proceedings of the Austrian-Polish Seminar, Universität Graz, October 24–26, 1991, D. Gronau and L. Reich (Eds.), Grazer Math. Ber. 316 (1992), 103–138.
- [13] J. Matkowski, On a generalization of Mulholland’s inequality, Abh. Math. Sem. Univ. Hamburg 63 (1993), 97–103.
- [14] J. Matkowski, The converse of the Hölder inequality and its generalizations, Studia Math. 109 (1994) 2, 171–182.
- [15] J. Matkowski, On a characterization of Lp-norm and a converse of Minkowski’s inequality, Hiroshima Math. J. 26 (1996), 277–287.
- [16] J. Matkowski, The converse of a generalized Hölder inequality, Publicationes Math. Debrecen 50 (1997), 135–143.
- [17] J. Matkowski, The converse theorem for Minkowski’s inequality, Indag. Math. (N.S.) 15 (2004) 1, 73–84.
- [18] J. Matkowski, The converse theorem for the Minkowski inequality, J. Math. Anal. Appl. 348 (2008), 315–323.
- [19] J. Matkowski, A converse of the Hölder inequality theorem, Math. Inequal. Appl. 12 (2009) 1, 21–32.
- [20] J. Matkowski, Subadditive periodic functions, Opuscula Math. 31 (2011) 1, 75–96.
- [21] J. Matkowski, The Pexider type generalization of the Minkowski inequality, J. Math. Anal. Appl. 393 (2012), 298–310.
- [22] J. Matkowski, Conjugate functions and a short proof of a property of convex functions, (to appear).
- [23] J. Matkowski, Subhomogeneity and subadditivity of the Lp-norm like functionals, J. Math. Anal. Appl. 404 (2013), 172–184.
- [24] J.Matkowski, T. Swiatkowski, Quasi-monotonicity, subadditive bijections of R+ and characterization of Lp-norm, J. Math. Anal. Appl. 154 (1991), 493–506.
- [25] H.P. Mulholland, On generalizations of Minkowski’s inequality in the form of a triangle inequality, Proc. London Math. Soc. 51 (1950), 294–307.
- [26] C.T. Ng, Functions generating Schur-convex sums, General Inequalities 5 (Oberwolfach, 1986), 433–438, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel, 1987.
- [27] M. Pycia, Linear functional inequalities – a general theory and new special cases, Dissertationes Math. 438 (2006), 62pp.
- [28] M.M. Rao, Z.D. Ren, Theory of Orlicz spaces, Marcel Dekker, Inc., New York-Basel- -Hong Kong, 1991.
- [29] A.W. Roberts, D.L. Varberg, Convex Functions, Academic Press, New York and London, 1973.
- [30] R.A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1950), 227–247.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9ff2ffe-ca05-4ebd-8e83-d0b7036881ac