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Abstract. For h : (0,∞) → R, the function h∗ (t) := th( 1
t
) is called (∗)-conjugate to

h. This conjugacy is related to the Hölder and Minkowski inequalities. Several properties of

(∗)-conjugacy are proved. If ϕ and ϕ∗ are bijections of (0,∞) then (ϕ−1)∗ =
([

(ϕ∗)−1]∗)−1

.

Under some natural rate of growth conditions at 0 and ∞, if ϕ is increasing, convex, ge-
ometrically convex, then

[(
ϕ−1

)∗]−1 has the same properties. We show that the Young
conjugate functions do not have this property. For a measure space (Ω,Σ, µ) denote by
S = S(Ω,Σ, µ) the space of all µ-integrable simple functions x : Ω → R. Given a bijection
ϕ : (0,∞)→ (0,∞), define Pϕ : S → [0,∞) by

Pϕ(x) := ϕ−1

( ∫

Ω(x)

ϕ ◦ |x| dµ
)
,

where Ω(x) is the support of x. Applying some properties of the (∗) operation, we prove that
if
∫
Ω

xy ≤ Pϕ(x)Pψ(y) where ϕ−1 and ψ−1 are conjugate, then ϕ and ψ are conjugate power

functions. The existence of nonpower bijections ϕ and ψ with conjugate inverse functions
ψ =

[
(ϕ−1)∗

]−1 such that Pϕ and Pψ are subadditive and subhomogeneous is considered.

Keywords: Lp-norm like functional, homogeneity, subhomogeneity, subadditivity, the con-
verses of Minkowski and Hölder inequalities, generalization of the Minkowski and Hölder
inequalities, conjugate (complementary) functions, Young conjugate functions, convex func-
tion, geometrically convex function, Wright convex function, functional equation.
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1. INTRODUCTION

For a measure space (Ω,Σ, µ) denote by S = S(Ω,Σ, µ) the linear real space of all
µ-integrable simple functions x : Ω → R and put S+ := {x ∈ S : x ≥ 0} . For an

c© AGH University of Science and Technology Press, Krakow 2014 523



524 Janusz Matkowski

arbitrary bijection ϕ : (0,∞) → (0,∞) define the functional Pϕ : S → [0,∞) by the
formula

Pϕ(x) :=





ϕ−1

( ∫
Ω(x)

ϕ ◦ xdµ
)

if µ (Ω(x)) > 0,

0 if µ (Ω(x)) = 0,

where Ω(x) is the support of x ∈ S. If ϕ(t) = ϕ(1)tp for some p ≥ 1, this functional
becomes the Lp-norm.

If (Ω,Σ, µ) is nontrivial then, under a weak regularity condition on ϕ, the func-
tional Pϕ is (positively) homogeneous, that is,

Pϕ(tx) = tPϕ(x), t > 0, x ∈ S+,

if and only if ϕ is a power function, i.e. ϕ (t) = ϕ (1) tp for some real p 6= 0 (cf. [7]).
In [17] (cf. also [18]), under the assumption of the existence of two sets A,B ∈ Σ

such that
0 < µ (A) < 1 < µ (B) <∞, (1.1)

and a weak regularity condition on ϕ (that is, sometime removable [11, 15]), it has
been proved that if Pϕ is subadditive, that is, if

Pϕ(x+ y) ≤ Pϕ (x) + Pϕ (y) , x, y ∈ S+,

then ϕ (t) = ϕ (1) tp for some p ≥ 1, so Pϕ is the Lp-norm (cf. also [8] where it is
assumed that ϕ (0) = 0 and ϕ−1 is continuous at 0). This is a type of converse of the
Minkowski inequality theorem.

In [14], under the same assumption (1.1) on the measure space, we proved that if
ϕ and ψ are any bijections of (0,∞) such that

∫

Ω

xydµ ≤ Pϕ(x)Pψ (y) , x, y ∈ S+, (1.2)

then ϕ and ψ are the conjugate power functions, that is, there are p, q > 1 such that
ϕ(t) = ϕ (1) tp, ψ (t) = ψ (1) tq and 1

p + 1
q = 1 (cf. also [19]). This is a converse of the

Hölder inequality theorem.
In a recent paper [23] we proved that if the measure space satisfies (1.1) for some

A,B ∈ Σ and ϕ is monotonic, then Pϕ is subhomogeneous, i.e.

Pϕ(tx) ≤ tPϕ(x), t > 1, x ∈ S+,

if and only if ϕ is a power function, so if and only if Pϕ is homogeneous.
A measure space (Ω,Σ, µ) does not satisfy condition (1.1) iff either

A ∈ Σ, µ (A) 6= 0 =⇒ µ (A) ≥ 1,

(i.e. (Ω,Σ, µ) is a generalized counting measure space) or

A ∈ Σ, µ (A) <∞ =⇒ µ (A) ≤ 1

(i.e. (Ω,Σ, µ) is a “defected” probability space).
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It turns out that in each of these two cases there exist nonpower bijections ϕ such
that Pϕ is subadditive or subhomogeneous in S, and there are nonpower bijections
ϕ and ψ satisfying inequality (1.2). Moreover, in the just quoted papers, under some
natural regularity assumptions, these bijections have been characterized.

In Section 4 of the present paper we focus our attention on the Hölder type in-
equality where two arbitrary bijections ϕ and ψ have appeared. We show that the
converse of the Hölder inequality theorem remains true if the assumption (1.1) on the
underlying measure space is replaced by the equality

ψ−1 = (ϕ−1)∗

where, for an arbitrary function h : (0,∞) → R, the function h∗ : (0,∞) → R is
defined by the formula

h∗ (t) := th
(1

t

)
.

Since (h∗)∗ = h, and for h(t) := t1/p we have h∗(t) = t1/q, where 1
p + 1

q = 1, the
functions h and h∗ are said to be conjugate (or complementary). Some important
properties of the conjugate functions are presented in Section 3. We give a simple
argument showing that h is convex iff h∗ is. The convexity of h is equivalent to
the subadditivity of the two variable function (s, t) → th

(
s
t

)
. This subadditivity

generalizes elementary Minkowski and Hölder inequalities. Moreover, the conjugate
function h∗ appears here in a genuine way. We prove, what is important in the sequel,
that if a function ϕ is increasing, convex, geometrically convex and such that

lim
t→0+

ϕ (t)

t
= 0, lim

t→∞
ϕ (t)

t
=∞,

then the function
[
(ϕ−1)∗

]−1 has the same properties. In Section 6 we show that the
Young conjugate functions do not have this property. (For the classical properties
of conjugate functions in the Young-sense see [28, 29].) If ϕ and ϕ∗ are bijections of
(0,∞) then

(ϕ−1)∗ =
([

(ϕ∗)−1
]∗)−1

.

Some connections between the involutory operations T (ϕ) := ϕ−1 and U (ϕ) := ϕ∗

are considered. We show that there is a homeomorphism of (0,∞) such that

(ϕ−1)∗ = (ϕ∗)−1
,

i.e. that U ◦ T (ϕ) = T ◦U (ϕ). The existence of a bijection ϕ satisfying this equation
is an open question.

The main result of Section 4 reads as follows. Suppose that the underlying measure
space is not trivial, that is, there are at least two measurable disjoint sets A,B of
finite positive measure such that log µ(B)

log µ(A) is irrational. If the functions ϕ−1 and ψ−1

are conjugate and inequality (1.2) holds true, then ϕ−1 and ψ−1 are conjugate power
functions. A suitable result in the case when inequality (1.2) is a reversed inequality
is also given.
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If ϕ (t) = ϕ (1) tp and ψ (t) = ψ (1) tq, where p > 1 and 1
p + 1

q = 1, that is, if ϕ
and ψ are conjugate power functions then, of course,

Pϕ(x+ y) ≤ Pϕ (x) + Pϕ (y) , Pψ(x+ y) ≤ Pψ(x) + Pψ (y) , x, y ∈ S+,

that is, Pϕ and Pψ satisfy the Minkowski inequality. In this connection the following
question arises. Assume that a measure space (Ω,Σ, µ) does not satisfy condition (1.1).
Do there exist nonpower conjugate bijections ϕ−1 and ψ−1 (that is, ψ−1 = (ϕ−1)∗)
satisfying simultaneously this system of Minkowski inequalities?

In Section 5 we show that the answer is affirmative. In the case when (Ω,Σ, µ) is a
generalized counting measure space, we give sufficient conditions for the existence of a
broad class of pairs of nonpower functions ϕ and ψ such that Pϕ and Pψ are subhomo-
geneous and subadditive (Theorem 5.2). Assuming additionally that (1, δ) ⊂ clµ (Σ)
for some δ > 1, we prove that these conditions are also necessary (Theorem 5.3).

In the case when the measure space is a defected probability space, we construct
a pair of nonpower bijections ϕ and ψ of (0,∞) satisfying the condition ψ−1 =(
ϕ−1

)∗ and such that Pϕ and Pψ are subadditive and subhomogeneous. It is an open
problem wether this construction gives a general criterion for the subhomogeneity and
subadditivity of the functionals Pϕ and Pψ with conjugate inverses ϕ−1 and ψ−1. The
simultaneous subadditivity of Pϕ and Pψ with conjugate ϕ−1 and ψ−1 considered at
the end of Section 5 leads to the following open problem.

Let ϕ and ψ be bijections of (0,∞) such that ψ−1 = (ϕ−1)∗. Suppose that the
function Φ : (0,∞)2 → (0,∞) defined by

Φ (s, t) := ϕ
(
ϕ−1 (s) + ϕ−1 (t)

)
, s, t > 0,

is concave. Is then the function Ψ : (0,∞)2 → (0,∞) defined by

Ψ (s, t) := ψ
(
ψ−1 (s) + ψ−1 (t)

)
, s, t > 0,

concave?
In Section 6 we recall some basic properties of conjugate (complementary) func-

tions in the sense of Young. Assuming that ϕ : (0,∞)→ (0,∞) is differentiable with
strictly increasing derivative and suitable rank of growth at 0 and ∞, we prove that
if ϕ is geometrically convex then, contrary to the case of (∗)-conjugacy, its Young
conjugate function is geometrically concave. It follows that, independently on the
type of the measure space, if ϕ and its Young conjugate function are geometrically
convex, then they are conjugate power functions. Moreover, we prove that if (Ω,Σ, µ)
is (or contains) a nontrivial probability measure space and ϕ and ψ are conjugate in
the sense of Young, then the simultaneous subhomogeneity of the functionals Pϕ and
Pψ implies that ϕ and ψ are the conjugate power functions. The same holds true for
the generalized counting measure if, for some δ > 1, the closure of the range of the
measure contains an interval (1, δ).
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2. PRELIMINARIES AND AUXILIARY RESULTS

Let (Ω,Σ, µ) be a measure space. Denote by S = S(Ω,Σ, µ) the linear real space of
all µ-integrable simple functions x : Ω → R. Let S+ =: {x ∈ S : x ≥ 0} . For x ∈ S+

put
Ω(x) := {ω ∈ Ω : x (ω) 6= 0}.

For a bijection ϕ : (0,∞)→ (0,∞) the functional Pϕ : S+ → R+ by

Pϕ(x) :=




ϕ−1

( ∫
Ω(x)

ϕ ◦ xdµ
)

if µ (Ω(x)) > 0,

0 if µ (Ω(x)) = 0
(2.1)

is correctly defined.
Denote by χC the characteristic function of a set C.
If x ∈ S and µ (Ω(x)) > 0 then, clearly,

x =
n∑

j=1

xjχAj

for some n ∈ N, pairwise disjoint sets Aj ∈ Σ such that 0 < µ (Aj) <∞, and xj ∈ R,
xj 6= 0 for j = 1, . . . , n. Moreover,

Pϕ(|x|) = ϕ−1

( n∑

j=1

ϕ (|xj |)µ (Aj)

)
.

Definition 2.1 ([12]). Let I ⊂ (0,∞) be an interval. A function f : I → (0,∞) is
said to be Jensen geometrically convex (Jensen geometrically concave) if

f
(√
uv
)
≤
√
f(u)f (v), u, v ∈ I,

(the reversed inequality holds), and Jensen geometrically affine if the case of the
equality is satisfied.

We say that f : I → (0,∞) is geometrically convex (geometrically concave) if it is
Jensen geometrically convex (Jensen geometrically concave) and continuous.

The above definition is a special case of the following more general one due to
G. Aumann [1]. Let J ⊂ R be an interval and M : J2 → J a mean, that is,

min (u, v) ≤M (u, v) ≤ max (u, v) , u, v ∈ J.
A function f : I → J, where I is a subinterval of J, is said to be convex with respect
to the mean M (briefly, M -convex) if

f (M (u, v)) ≤M (f(u), f (v)) , u, v ∈ I.
Thus f : I → R is Jensen convex in the interval I ⊂ R iff it is convex with

respect to the arithmetic mean M(u, v) = u+v
2 (u, v ∈ R); f : I → (0,∞) is Jensen

geometrically convex in the interval I ⊂ (0,∞) iff it is convex with respect to the
geometric mean M(u, v) =

√
uv (u, v ∈ (0,∞)).
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Remark 2.2. A function f : I → (0,∞) is Jensen geometrically convex iff log ◦f ◦exp
is Jensen convex on the interval log (I) .

A function f : I → (0,∞) is geometrically convex if and only if

f
(
uλv1−λ) ≤ f (u)

λ
f (v)

1−λ
, u, v ∈ I; λ ∈ (0, 1) .

If f is Jensen geometrically convex and continuous at least at one point, then f is
continuous (cf. Kuczma [6]). If f is differentiable, then it is geometrically convex
(concave) iff the function

I 3 u 7−→ f ′ (u)

f (u)
u is increasing (decreasing).

Note also that [5] if f : (0,∞)→ (0,∞) is differentiable, f ′ is positive, geometrically
convex, and limx→0 f(x) = 0, then f is geometrically convex.

Assume that f is continuous at least at one point. Then f : I → (0,∞) is geomet-
rically affine iff f(u) = aup for some a > 0 and p ∈ R.

Example 2.3. Let p, q ∈ R, p < q. Then the function

ϕ (t) :=

{
tp, 0 < t ≤ 1,

tq, t > 1

is geometrically convex on (0,∞). If moreover p ≥ 1, then ϕ is convex.

This example shows that convex and geometrically convex functions need not be
differentiable everywhere.

One can easily verify the following remark.

Remark 2.4. For p, q, c ∈ R, c ≥ 0, put

ϕ (t) = (t+ c)
q
tp, t > 0.

If q ≥ 0 (q ≤ 0), then ϕ is geometrically convex (geometrically concave).
If p+ q ≥ 1 and pq ≤ 0, or p ≥ 1 and q ≥ 0, then ϕ is convex.

Remark 2.5. Let ψ be an increasing homeomorphism of (0,∞). It is obvious that ψ
and log ◦ψ ◦ exp are convex if and only if the function ϕ := ψ−1 and log ◦ϕ ◦ exp are
concave.

Lemma 2.6. Assume that ϕ : (0,∞)→ (0,∞).

(i) For every t > 1, the function

(0,∞) 3 r → ϕ(tr)

ϕ (r)

is increasing (decreasing) if and only if the function f : R→ R,

f := log ◦ϕ ◦ exp ,
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is Wright-convex, i.e. for all u1, u2 ∈ R and λ ∈ (0, 1) ,

f (λu1 + (1− λ)u2) + f ((1− λ)u1 + λu2) ≤ f (u1) + f (u2) , (2.2)

(Wright-concave, i.e. the reversed inequality is satisfied).
(ii) Let ϕ : (0,∞) → (0,∞) be strictly increasing and onto. Then, for every t > 1,

the function

(0,∞) 3 r → ϕ
(
tϕ−1(r)

)

r

is increasing (decreasing) if and only if ϕ is geometrically convex (geometrically
concave).

Proof. (i) Note that for every t > 1 the function under consideration is increasing if
and only if for every v > 0, the function R 3 u 7−→ logϕ (expu+v) − logϕ (expu) is
increasing.

Thus, putting f := log ◦ϕ ◦ exp, we have for all u,w ∈ R and all v > 0,

u < w =⇒ f (u+ v)− f(u) ≤ f (w + v)− f(w).

Assume that a function f : R→ R satisfies this implication. Taking arbitrary
u1, u2 ∈ R, u1 < u2, λ ∈ (0, 1) , and putting

u = u1, w = (1− λ)u1 + λu2, v = (1− λ) (u2 − u1) ,

we hence get (2.2), that is, f is convex in the sense of Wright.
Conversely, taking arbitrary u,w, v ∈ R, u < w, v > 0, and setting

u1 := u, u2 := w + v, λ :=
w − u

w + v − u
in (2.2), we obtain f (u+ v) − f(u) ≤ f (w + v) − f(w). This completes the proof
of (i).

Part (ii) follows from (i), the continuity of f ([26]) and Remark 2.2.

Let us quote the following well known criterion of subadditivity (cf. [4, p. 239],
also [30]).

Lemma 2.7. Let f : (0,∞)→ (0,∞). If the function

(0,∞) 3 r 7−→ f(r)

r

is increasing (decreasing), then f is superadditive, i.e.

f(r + s) ≥ f(r) + f(s), r, s > 0,

(subadditive).

A linear functional inequality generalizing both convexity as well as subadditivity
is considered in [27]. Note that subadditive periodic functions were considered in [20].
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We shall need the following (cf. [13, 23]).

Lemma 2.8. Let (Ω,Σ, µ) be a measure space with at least two disjoint sets of finite
and positive measure and ϕ : (0,∞)→ (0,∞) be a monotonic bijection.

(i) If Pϕ is subadditive, that is, if

Pϕ(x+ y) ≤ Pϕ (x) + Pϕ (y) , x, y ∈ S+, (2.3)

then ϕ is increasing.
(ii) If Pϕ is subadditive and there are A,B ∈ Σ, A ∩B = ∅, such that either

µ (A) = 1 and 0 < µ (B) <∞,

or µ (A) and µ (B) are positive and

µ (A) + µ (B) = 1,

then ϕ is convex.

Proof. Ad (i). By the assumptions, there are A,B ∈ Σ such that A ∩ B = ∅ and
a := µ (A) , b := µ (B) are positive reals. Taking x := x1χA+x2χB , y := y1χA+y2χB
in (2.3) and making use of (2.1) we get

ϕ−1 (aϕ (x1 + y1) + bϕ (x2 + y2)) ≤
≤ ϕ−1 (aϕ (x1) + bϕ (x2)) + ϕ−1 (aϕ (y1) + bϕ (y2))

(2.4)

for all x1, x2, y1, y2 > 0. By assumptions, ϕ is strictly monotonic and, being bijective,
it is continuous. To show that ϕ is increasing, assume for the contrary, that ϕ is
decreasing. It follows that

lim
t→0

ϕ(t) =∞ and lim
t→∞

ϕ(t) = 0.

Since ϕ−1 is decreasing, letting y2 tend to 0 in inequality (2.4), we get

ϕ−1 (aϕ (x1 + y1) + bϕ (x2)) ≤ ϕ−1 (aϕ (x1) + bϕ (x2)) , x1, y1, x2 > 0.

Hence, letting here x2 tend to ∞, we get

ϕ−1 (aϕ (x1 + y1)) ≤ ϕ−1 (aϕ (x1)) , x1, y1 > 0,

whence, letting x1 tend to 0, we obtain

ϕ−1 (aϕ (y1)) ≤ 0, y1 > 0.

This contradiction completes the proof of (i).
Ad (ii). Assume that there are disjoint A,B ∈ Σ such that a := µ (A) = 1, and

b := µ (B) is positive. From (2.4) we get the inequality

ϕ−1 (ϕ (x1 + y1) + bϕ (x2 + y2)) ≤
≤ ϕ−1 (ϕ (x1) + bϕ (x2)) + ϕ−1 (ϕ (y1) + bϕ (y2))
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for all x1, x2, y1, y2 > 0. To show the convexity of ϕ take arbitrary r, s > 0, r > s. In
view of part (i), the function ϕ is increasing. Thus ϕ−1 is increasing and, consequently,
the numbers

x1 := ϕ−1(s), x2 := ϕ−1

(
r − s

2b

)
, y1 := ϕ−1

(
r + s

2

)
− ϕ−1 (s)

are positive. Substituting them into the above inequality and letting y2 tend to 0 we
get

ϕ−1(s) + ϕ−1(r)

2
≤ ϕ−1

(
r + s

2

)
,

which means that ϕ−1 is Jensen concave. The increasing monotonicity of ϕ implies
that ϕ is convex.

Now assume that there are disjoint A,B ∈ Σ such that a := µ (A) , b := µ (B) are
positive and a+ b = 1. Take arbitrary s, t > 0. Setting

x1 = y2 := ϕ−1 (s) , x2 = y1 := ϕ−1 (t)

in (2.4), we get

ϕ−1 (s) + ϕ−1 (t) ≤ ϕ−1 (as+ (1− a) t) + ϕ−1 (at+ (1− a) s) , s, t > 0,

which proves that ϕ−1 is a-Wright concave. Since, by the first part of this result, ϕ is
increasing, it is convex ([26]).

Lemma 2.9. Let (Ω,Σ, µ) be a measure space such that

A ∈ Σ ⇒ µ(A) ≤ 1 or µ(A) =∞,

and suppose that there are two sets B,C ∈ Σ such that

0 < µ(B) < µ(C) = 1.

Let ϕ : (0,∞)→ (0,∞) be one-to-one, onto and increasing.

(i) The functional Pϕ is subhomegeneous, that is,

Pϕ(tx) ≤ tPϕ(x), x ∈ S+, t > 1,

if and only if ϕ is differentiable and ϕ′ is geometrically concave.
(ii) The functional Pϕ is superhomegeneous, that is,

Pϕ(tx) ≥ tPϕ(x), x ∈ S+, t > 1,

if and only if ϕ is differentiable and ϕ′ is geometrically convex.

Proof. (i) Suppose that ϕ′ is geometrically concave. Clearly, for every t > 1, the
function ϕ ◦ (tϕ−1) is differentiable and

(
ϕ ◦ (tϕ−1)

)′
(u) =

ϕ′(tϕ−1 (u))

ϕ′(ϕ−1 (u))
t, u ∈ (0,∞) .
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Consequently, for every t > 1,

(
ϕ ◦ (tϕ−1)

)′ ◦ ϕ (u) =
ϕ′(tu)

ϕ′(u)
t, u ∈ (0,∞).

Hence, taking into account Lemma 2.6 (i) and the geometrical concavity of ϕ′, we
conclude that for every t > 1 the function

(
ϕ ◦ (tϕ−1)

)′ ◦ ϕ is decreasing. Since ϕ is
increasing, it follows that, for every t > 1, the function ϕ ◦ (tϕ−1) is concave.

Take an arbitrary x ∈ S+ such that µ (Ω(x)) > 0. Then there exists n ∈ N, the
pairwise disjoint sets A1, . . . , An ∈ Σ of positive measure and x1, . . . , xn > 0 such
that

x =
n∑

j=1

xjχAj
.

Put

aj := µ(Aj), j = 1, . . . , n; a := 1−
n∑

j=1

aj .

According to the assumptions,

0 <
n∑

j=1

aj ≤ 1,

whence a ≥ 0. If a > 0 then, for every t > 0, by the concavity of ϕ ◦ (tϕ−1), we have

n∑

j=1

ajϕ(tϕ−1(xj)) + aϕ
(
tϕ−1 (u)

)
≤ ϕ

(
tϕ−1

( n∑

j=1

ajxj + au

))

for all x1, . . . , xn > 0 and u > 0. Since limu→0+ ϕ
(
tϕ−1 (u)

)
= 0, letting u tend to 0,

we hence obtain

n∑

j=1

ajϕ
(
tϕ−1 (xj)

)
≤ ϕ

(
tϕ−1

( n∑

j=1

ajxj

))
, x1, . . . , xn > 0, t > 1.

Of course, this inequality holds true also if
∑n
j=1 aj = 1. Replacing xj by ϕ(xj),

j = 1, . . . , n, and making use of the strict monotonicity of ϕ we hence get, for all t > 1
and x1, . . . , xn > 0,

ϕ−1

( n∑

j=1

ajϕ(txj)

)
≤ tϕ−1

( n∑

j=1

ajϕ(xj)

)
,

which means that Pϕ(tx) ≤ tPϕ(x) for all t > 1.
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Now we prove the converse implication. Note that µ(B ∪ C) = 1. Putting D :=
(B ∪C)\B we have b := µ(B) ∈ (0, 1) and µ(D) = 1− b. For x = x1χB + x2χD, with
arbitrary x1, x2 > 0, by the subhomogeneity of Pϕ, we have, for all t > 1,

ϕ−1 (bϕ(tx1) + (1− b)ϕ(tx2)) ≤ tϕ−1 (bϕ(x1) + (1− b)ϕ(x2)) .

Replacing x1 by ϕ−1(x1) and x2 by ϕ−1(x2) and making use of the increasing mono-
tonicity of ϕ, we hence get

bϕ(tϕ−1(x1)) + (1− b)ϕ(tϕ−1(x2)) ≤ ϕ(tϕ−1 (bx1 + (1− b)x2))

for all t > 1 and x1, x2 > 0, which proves that for every t > 1 the function ϕ ◦ (tϕ−1)
is b-concave. The Daróczy-Páles identity ([2]):

b

(
b
x+ y

2
+ (1− b)x

)
+ (1− b)

(
by + (1− b) x+ y

2

)
=
x+ y

2
, x, y ∈ R,

implies that ϕ ◦ (tϕ−1) is 1
2 -concave, that is, Jensen concave. Since ϕ ◦ (tϕ−1) is

continuous, it follows that for every t > 1 this function is concave and, consequently,

aϕ(tϕ−1(x1)) + (1− a)ϕ(tϕ−1(x2)) ≤ ϕ(tϕ−1 (ax1 + (1− a)x2)),

t > 1, a ∈ (0, 1), x1, x2 > 0.

Letting x2 tend to 0, we hence get

aϕ(tϕ−1(r)) ≤ ϕ(tϕ−1 (ar)), t > 1, a ∈ (0, 1), r > 0,

or, equivalently,

ϕ(tϕ−1(r))

r
≤ ϕ(tϕ−1(ar))

ar
, t > 1, a ∈ (0, 1), r > 0.

Thus the function (0,∞) 3 r 7−→ ϕ(tϕ−1(r))
r is decreasing and, by Lemma 2.6 (ii), the

function ϕ is geometrically concave. It follows that the one-sided derivatives ϕ′−, ϕ′+
of ϕ exist, they are monotonic, equal up to at most a countable set.

On the other hand the concavity of the function ϕ ◦ (tϕ−1) for t > 1 implies that,
for every t > 1, its one sided derivatives

(
ϕ ◦ (tϕ−1)

)′
− ,
(
ϕ ◦ (tϕ−1)

)′
+

exist and are
decreasing. Since ϕ is increasing we have, for every t > 1,

(
ϕ ◦ (tϕ−1)

)′
+

(r) =
ϕ′+(tϕ−1(r))

ϕ′+ (ϕ−1 (r))
t, r > 0,

and the function

(0,∞) 3 r 7−→ ϕ′+(tϕ−1(r))

ϕ′+ (ϕ−1(r))

is decreasing. It follows that, for every t > 1, the function

(0,∞) 3 r 7−→ ϕ′+(tr)

ϕ′+(r)
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is decreasing. By Lemma 2.6 (i), the function log ◦ϕ′+ ◦ exp is Wright-concave. Since
this function is measurable, applying the result of [26], we conclude that ϕ′+ is con-
tinuous. Consequently, ϕ is differentiable in (0,∞), and ϕ′ = ϕ′+ is geometrically
concave. This completes the proof of result (i).

Since the proof of (ii) is analogous, we omit it.

In the first part of the proof we have shown that, for every t > 1, the function
ϕ ◦

(
tϕ−1

)
is concave and limu→0+ ϕ

(
tϕ−1 (u)

)
= 0. It follows that, for every t > 1,

the function

(0,∞) 3 u→ ϕ
(
tϕ−1(u)

)

u

is decreasing. Composing this function with the increasing function ϕ we conclude
that, for every t > 1, the function

(0,∞) 3 r → ϕ (tr)

ϕ (r)

is decreasing. In view of Lemma 2.6, the function ϕ is geometrically concave. This
proves the following remark.

Remark 2.10. Let ϕ : (0,∞) → (0,∞) be one-to-one, increasing and onto. If ϕ is
differentiable and ϕ′ is geometrically concave (convex), the function ϕ is geometrically
concave (convex) (see also [5, 23]).

From Theorem 5 and Theorem 6 in [23] we immediately get the following lemma.

Lemma 2.11. Let (Ω,Σ, µ) be a measure space such that

A ∈ Σ ⇒ µ(A) = 0 or µ(A) ≥ 1. (2.5)

Suppose that ϕ : (0,∞)→ (0,∞) is strictly increasing and onto.

(i) If ϕ is geometrically convex then Pϕ is subhomegeneous, that is,

Pϕ(tx) ≤ tPϕ(x), x ∈ S+, t > 1.

(ii) If ϕ is geometrically concave then Pϕ is superhomegeneous, that is,

Pϕ(tx) ≥ tPϕ(x), x ∈ S+, t > 1.

Moreover, if for some δ > 1,
(1, δ) ⊂ cl (µ(Σ)) ,

then the converses of the implications of (i) and (ii) hold true.

We shall need also the following generalization of Mulholland’s inequality ([25],
see also [21]).

Theorem 2.12 ([13]). Let (Ω,Σ, µ) be a measure space such that condition (2.5) is
satisfied. If ϕ : (0,∞)→ (0,∞) is strictly increasing, onto, convex and geometrically
convex, then

Pϕ(x+ y) ≤ Pϕ (x) + Pϕ (y) , x, y ∈ S+.
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3. CONJUGATE FUNCTIONS

Definition 3.1. Let h : (0,∞) → R be an arbitrary function. The function
h∗ : (0,∞)→ R,

h∗(t) := th
(1

t

)
, t > 0,

is said to be (∗)-conjugate of h (briefly, conjugate of h). If h∗ = h, then h is called
(∗)-selfconjugate (briefly, selfconjugate).

Remark 3.2. Let R(0,∞) denote the real linear space of all functions h : (0,∞)→ R.
Obviously, the operator ∗ : R(0,∞) → R(0,∞), given by R(0,∞) 3 h 7−→ h∗, is homoge-
neous, additive (so linear) and bijective.

Moreover, this operator is strictly related to two variable homogeneous functions.

Properties of conjugate functions. Let h : (0,∞)→ R be an arbitrary function.
Then:

1. (h∗)∗ = h; h(1) = h∗(1).
2. If p ∈ R, p 6= 0, and h(t) = h(1)t1/p, then h∗ (t) = h (1) t1/q, where 1

p + 1
q = 1.

3. ([9, 10]) h is convex (concave) iff so is h∗.
4. Let g(t) := h(t)

t for t > 0. Then h is convex iff the function (0,∞) 3 t → g( 1
t ) is

convex. If follows that either g is monotonic or unimodal ([22]). If h∗ is increasing,
then g is decreasing; if moreover h is convex and h (0+) = 0, then h(t) = h(1)t for
all t > 0.

5. a) If h is a concave bijection of (0,∞) , then h and h∗ are increasing, h∗ is concave
and maps (0,∞) onto the interval (α, β), where

α := lim
t→∞

h (t)

t
= lim
t→∞

h′− (t) , β := lim
t→0+

h (t)

t
= lim
t→0+

h′+ (t) ,

where h′− (t) and h′+ (t) denote, respectively, the left and right derivative of h
at t.

b) If h is a convex and increasing bijection of (0,∞), then h∗ is decreasing and
maps (0,∞) onto the interval (α, β), where

α := lim
t→0+

h (t)

t
= lim
t→0+

h′+ (t) , β := lim
t→∞

h (t)

t
= lim
t→∞

h′− (t) .

c) If h is a decreasing and convex bijection of (0,∞), then h∗ is an increasing,
convex bijection of (0,∞);
(of course, h cannot be a decreasing and concave bijection of (0,∞)).

6. If h is convex and

lim
t→0

h (t)

t
= 0 and lim

t→∞
h (t)

t
=∞,

or

lim
t→0

h (t)

t
=∞ and lim

t→∞
h (t)

t
= 0,
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then, respectively,
lim
t→0

h∗ (t) =∞ and lim
t→∞

h∗ (t) = 0,

or
lim
t→0

h∗ (t) = 0 and lim
t→∞

h∗ (t) =∞.

7. A function h is self-conjugate, that is, h = h∗, if and only if the function of two
variables

(0,∞)2 3 (s, t) −→ th
(s
t

)

is symmetric.
8. Let H : (0,∞)2 → R be positively homogeneous, i.e.

H (τs, τt) = τH (s, t) , τ, s, t > 0.

Then H is subadditive if and only if the functions h1, h2 : (0,∞)→ R given by

h1 (s) := H (s, 1) , s > 0; and h2 (t) := H (1, t) , t > 0,

are convex. Moreover,

H (s, t) = th1

(s
t

)
= sh2

(
t

s

)
, s, t > 0,

and
h2 = (h1)

∗
.

9. ([9, 10]) (a generalization of the Minkowski and Hölder inequalities for sums) The
function h is convex (concave) iff the function H : (0,∞)2 → R,

H (s, t) := th
(s
t

)
, s, t > 0,

is subadditive (superadditive), i.e.

(y1 + y2)h

(
x1 + x2

y1 + y2

)
≤ y1h

(
x1

y1

)
+ y2h

(
x2

y2

)
, x1, x2, y1, y2 > 0,

(the reversed inequality is satisfied).
10. ([9, 10]) (a generalization of the Minkowski and Hölder inequalities for integrals)

Let (Ω,Σ, µ) be a measure space such that µ (Ω) > 0. If a function h is convex
(concave), then

∫

Ω

ydµh




∫
Ω

xdµ

∫
Ω

ydµ


 ≤

∫

Ω

yh ◦
(
x

y

)
dµ

for all positive x, y ∈ L1
+ (Ω,Σ, µ) (the reversed inequality is satisfied).

11. The function h is geometrically convex (geometrically concave) iff so is h∗.
12. If h : (0,∞) → (0,∞) is geometrically convex and α, β : (0,∞) → (0,∞) are

geometrically affine, then α · h ◦ β is geometrically convex.
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We shall prove, for instance Property 3, applying a simpler argument than that
in [9] and [10]. Suppose that h∗ is convex. Hence, by the definition of h∗, we have

(tr + (1− t) s)h
(

1

tr + (1− t) s

)
≤ trh

(
1

r

)
+ (1− t) sh

(
1

s

)
, t ∈ (0, 1) , r, s > 0,

and, of course, it follows that h is continuous. Taking here

r :=
1

u
, s :=

1

v
, t :=

u

u+ v

for arbitrary u, v ∈ (0,∞), we obtain

h

(
u+ v

2

)
≤ h (u) + h (v)

2
, u, v > 0.

The continuity of h implies its convexity (cf. [6]). Since, by Property 1, h = (h∗)∗ , to
prove the converse implication, it is enough to replace in the above inequalities the
function h by h∗.

Now we prove the following result.

Theorem 3.3. Suppose that γ : (0,∞) → (0,∞) is bijective, increasing, concave,
geometrically concave and

lim
t→0+

γ(t)

t
=∞, lim

t→∞
γ(t)

t
= 0.

Then γ∗ : (0,∞)→ (0,∞) , the conjugate of γ,

γ∗ (t) := tγ
(1

t

)
, t > 0,

has the same properties, i.e. γ∗ is bijective, increasing, concave, geometrically concave
and

lim
t→0+

γ∗(t)
t

=∞, lim
t→∞

γ∗(t)
t

= 0.

Proof. By the Properties 3 and 11, the function γ∗ is concave and geometrically
concave. Since γ is an increasing homeomorphism of (0,∞), we have

γ (0+) := lim
t→0+

γ (t) = 0, γ (∞) := lim
t→∞

γ (t) =∞.

The first of these relations and the concavity of γ imply that the function
(0,∞) 3 t→ γ(t)/t is strictly decreasing. Now, for arbitrary s, t > 0 such that s < t
we have

γ∗ (s) =
γ
(
s−1
)

s−1
<
γ
(
t−1
)

t−1
= γ∗ (t) ,

which shows that γ∗ is increasing. Since

lim
t→0+

γ∗ (t) = lim
t→0+

γ
(
t−1
)

t−1
= lim
t→∞

γ (t)

t
= 0
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and

lim
t→∞

γ∗ (t) = lim
t→∞

γ
(
t−1
)

t−1
= lim
t→0+

γ (t)

t
=∞,

the function γ∗ is a bijection of (0,∞). Since γ is an increasing bijection of (0,∞),
we have

lim
t→0+

γ∗ (t)

t
= lim
t→0+

γ
(
t−1
)

= lim
t→∞

γ (t) =∞,

and
lim
t→∞

γ∗ (t)

t
= lim
t→∞

γ
(
t−1
)

= lim
t→0+

γ (t) = 0.

This completes the proof.

Theorem 3.4. Suppose that ϕ : (0,∞) → (0,∞) is bijective, increasing, convex,
geometrically convex and

lim
t→0+

ϕ (t)

t
= 0, lim

t→∞
ϕ (t)

t
=∞. (3.1)

Then the function
ψ :=

[
(ϕ−1)∗

]−1

has the same properties, i.e. ψ : (0,∞) → (0,∞) is bijective, increasing, convex,
geometrically convex and

lim
t→0+

ψ (t)

t
= 0, lim

t→∞
ψ (t)

t
=∞.

Proof. It is easy to verify that the function γ := ϕ−1 maps (0,∞) onto itself, is
bijective, increasing, concave, such that

lim
t→0+

γ (t)

t
=∞, lim

t→∞
γ (t)

t
= 0.

In view of Theorem 2, the function ψ−1 = γ∗ inherits the same properties. It follows
that ψ has the same properties as ϕ. This completes the proof.

Remark 3.5. Let ϕ : (0,∞)→ (0,∞). Note that:

(i) ϕ∗ is one-to-one iff the function t 7−→ ϕ(t)
t is one-to-one,

(ii) ϕ∗ is onto iff the function t 7−→ ϕ(t)
t is onto,

(iii) ϕ∗ is bijective iff the function t 7−→ ϕ(t)
t is bijective.

It is natural to ask what is the relation between ϕ∗ and (ϕ−1)∗. The answer is
given by the following theorem.

Theorem 3.6. Suppose that ϕ : (0,∞)→ (0,∞) and ϕ∗ are bijective. Then

(ϕ−1)∗ =
([

(ϕ∗)−1
]∗)−1

.
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Proof. Since

ϕ(t) = tϕ∗
(1

t

)
, ϕ−1(t) = t(ϕ−1)∗

(
1

t

)
(3.2)

and ϕ−1 (ϕ (t)) = t, we have

tϕ∗
(1

t

)[ (
ϕ−1

)∗
(

1

tϕ∗
(

1
t

)
)]

= t, t > 0,

that is,

ϕ∗
(1

t

)[
(ϕ−1)∗

(
1

tϕ∗( 1
t )

)]
= 1, t > 0.

By the first of the formulas (3.2), this equality can be written in the form

ϕ∗
(1

t

)[
(ϕ−1)∗

(
1

ϕ (t)

)]
= 1, t > 0,

whence
ϕ∗
( 1

ϕ−1(t)

)[(
ϕ−1

)∗ (1

t

)]
= 1, t > 0.

Replacing t by 1/t we hence get

ϕ∗
( 1

ϕ−1( 1
t )

) [
(ϕ−1)∗ (t)

]
= 1, t > 0,

that, by (3.2), is equivalent to the equality

ϕ∗
(

t

(ϕ−1)∗(t)

)[
(ϕ−1)∗ (t)

]
= 1, t > 0.

Writing this equation in the form

1

(ϕ−1)∗(t)
= ϕ∗

(
t

(ϕ−1)∗(t)

)
, t > 0,

and taking (ϕ∗)−1 of both sides gives

(ϕ∗)−1

(
1

(ϕ−1)
∗

(t)

)
=

t

(ϕ−1)∗(t)
, t > 0,

whence
(ϕ−1)∗(t)

[
(ϕ∗)−1

(
1

(ϕ−1)∗(t)

)]
= t, t > 0.

Since ϕ and ϕ∗ are bijective, Remark 3.5 implies that (ϕ−1)∗ is a bijection of (0,∞) .
Now the last equality says that (ϕ−1)∗ and the function

(0,∞) 3 t 7−→ t (ϕ∗)−1
(1

t

)

are inverses of one another. This completes the proof.
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Denote byW(0,∞), brieflyW, the set of all bijective functions ϕ : (0,∞)→ (0,∞)
such that ϕ∗ is bijective. Let T,U :W →W be the operators defined by

T (ϕ) := ϕ−1, U (ϕ) := ϕ∗, ϕ ∈ W.

(Thus U is the restriction of the operator ∗ to the set W.)
For a selfmapping F of a set, by Fn denote the n-th iterate of F.
From Theorem 3.6 we obtain the following corollary.

Corollary 3.7. T and U are involutions, i.e.

T 2 = T ◦ T = id |W = U ◦ U = U2,

and
(U ◦ T )

3
= id |W = (T ◦ U)

3
,

T ◦ U ◦ T ◦ U ◦ T = U, U ◦ T ◦ U ◦ T ◦ U = T,

(T ◦ U)
2

= U ◦ T, (U ◦ T )
2

= T ◦ U,
U ◦ T ◦ U = T ◦ U ◦ T, (U ◦ T ◦ U)

2
= id |W = (T ◦ U ◦ T )

2
,

(i.e. U ◦ T ◦ U and T ◦ U ◦ T are the involutions of W). Moreover U and T do not
commute, i.e. U ◦ T 6= T ◦ U.
Remark 3.8. Taking ϕ ∈ W, ϕ(t) = tp (t > 0) for some real p 6= 0, by the definitions
of U and T, we have

U (ϕ) (t) = t1−p, T ◦ U (ϕ) (t) = t1/(1−p), U ◦ T ◦ U (ϕ) (t) = tp/(p−1),

T ◦ U ◦ T ◦ U (ϕ) (t) = t(p−1)/p, U ◦ T ◦ U ◦ T ◦ U (ϕ) (t) = t1/p,

T ◦ U ◦ T ◦ U ◦ T ◦ U (ϕ) (t) = tp.

For p ∈ R\{−1, 0, 1
2 , 1, 2}, all functions in these sequence are different. This shows

that n = 3 is the smallest positive integer such that (T ◦ U)
n

= id |W .

In view of Corollary 3.7, the operators U and T do not commute. We prove even
more.

Proposition 3.9. There is no a continuous function ϕ ∈ W such that

(ϕ−1)∗ = (ϕ∗)−1
. (3.3)

Proof. Assume that there is ϕ ∈ W such that (3.3) is satisfied. Taking first the
(∗)-complementary functions, and then the inverse functions of both sides we get

ϕ =
([

(ϕ∗)−1
]∗)−1

.

Hence, applying Theorem 3.6, we obtain ϕ =
(
ϕ−1

)∗
, whence

ϕ−1 = ϕ∗.
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Thus ϕ ◦ ϕ∗ = id
∣∣
(0,∞) , i.e.

ϕ
(
tϕ
(1

t

))
= t, t > 0.

Replacing here t by 1/t we conclude that ϕ satisfies the functional equation

ϕ

(
ϕ (t)

t

)
=

1

t
, t > 0. (3.4)

Now the following lemma concludes the proof.

Lemma 3.10. There is no a continuous function ϕ : (0,∞) → (0,∞) satisfying
equation (3.4).

Proof. It is easy to verify that a = 1
ϕ(1) is the only fixed point of any function

ϕ : (0,∞) → (0,∞) satisfying equation (3.4). Suppose that ϕ is continuous. Since ϕ
composed with the continuous function (0,∞) 3 t → ϕ(t)/t is a strictly decreasing
reciprocal function, ϕ must be strictly increasing and (0,∞) 3 t → ϕ(t)/t strictly
decreasing.

Setting t = a into (3.4) gives ϕ(1) = 1
a . Setting t = 1

a into (3.4) we get
ϕ (aϕ (1/a)) = a. Since ϕ (a) = a and ϕ is one-to-one, it follows that aϕ (1/a) = a,
whence ϕ (1/a) = 1. Now the relations ϕ(1) = 1

a , ϕ (1/a) = 1 and the increasing
monotonicity of ϕ imply that a = 1.

Since ϕ is strictly increasing and (0,∞) 3 t → ϕ(t)/t is strictly decreasing, we
have

ϕ(t) > t for all t ∈ (0, 1), ϕ(t) < t for all t > 1.

Hence
ϕ(t)

t
> 1 for all t ∈ (0, 1).

Since ϕ(t) < t for all t > 1, applying equation (3.4), we obtain

1

t
= ϕ

(
ϕ (t)

t

)
<
ϕ (t)

t
, t ∈ (0, 1),

whence ϕ(t) > 1 for all t ∈ (0, 1). This contradiction completes the proof.

Problem 3.11. Does there exists a (discontinuous) solution of (3.4)?

Remark 3.12. If ϕ : (0,∞) → (0,∞) satisfies equation (3.4) then, obviously, the
number 1

ϕ(1) is the only fixed point of ϕ. It is an open question if it is necessary that
ϕ (1) = 1. We show that there is no function ϕ : (0,∞) → (0,∞) satisfying (3.4),
differentiable at 1 such that ϕ (1) = 1.

Proof. Assume, for the contrary, that ϕ is such a solution. Differentiating both sides
of (3.4) at point 1 leads to [ϕ′ (1)]

2 − ϕ′ (1) + 1 = 0.
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Remark 3.13. In the first part of the proof of Proposition 3.9 we have applied
Theorem 3.6 to show the implication

(ϕ−1)∗ = (ϕ∗)−1
=⇒ ϕ−1 = ϕ∗, (ϕ ∈ W) .

A direct argument reads as follows:

If a function ϕ ∈ W satisfies (3.3), then

ϕ∗
[
(ϕ−1)∗ (t)

]
= t, t > 0,

and, by the definition of ϕ∗,

[
(ϕ−1)∗ (t)

]
· ϕ
(

1

(ϕ−1)∗ (t)

)
= t, t > 0.

Applying again the definition of the operator ∗, we obtain
[
tϕ−1

(1

t

)]
· ϕ
(

1

tϕ−1( 1
t )

)
= t, t > 0.

Dividing both sides by t and then replacing t by 1/t we obtain

ϕ−1 (t) · ϕ
(

t

ϕ−1 (t)

)
= 1, t > 0.

Replacing t by ϕ (t) yields

tϕ

(
ϕ(t)

t

)
= 1, t > 0.

Replacing here t by 1/t gives

ϕ

(
tϕ(

1

t
)

)
= t, t > 0,

that is,
ϕ (ϕ∗(t)) = t, t > 0.

Thus we have shown that ϕ−1 = ϕ∗.

Remark 3.14. For a set I ⊂ (0,∞) and a function h : I → (0,∞) put I∗ :={
1
t : t ∈ I

}
and define a conjugate function h∗ ([22]) by

h∗(x) = xh

(
1

x

)
, x ∈ I∗.

It is an open question if Theorem 4 remains true on replacing W by the set of all
one-to-one functions ϕ : (0,∞)→ (0,∞) such that ϕ∗ is one-to-one.
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Remark 3.15. Define V : W → W by V (ϕ) := 1
ϕ . Then, for all ϕ ∈ W and t > 0,

we have

T ◦ V (ϕ) (t) = ϕ−1
(1

t

)
, V ◦ T ◦ V (ϕ) (t) =

1

ϕ−1( 1
t )
, T ◦ V ◦ T ◦ V (ϕ) (t) =

1

ϕ( 1
t )
,

V ◦ T ◦ V ◦ T ◦ V (ϕ) (t) = ϕ
(1

t

)
, T ◦ V ◦ T ◦ V ◦ T ◦ V (ϕ) (t) =

1

ϕ−1 (t)
,

and

V ◦ T ◦ V ◦ T ◦ V ◦ T ◦ V (ϕ) = ϕ−1, T ◦ V ◦ T ◦ V ◦ T ◦ V ◦ T ◦ V (ϕ) = ϕ.

This shows that n = 4 is the smallest possible positive integer such that
(T ◦ V )

n
= id |W .

A substitute of the concept of (∗)-conjugacy defined on an arbitrary interval I ⊂
(0,∞) allows us to give a simple analytical proof that if f : I → R is convex, then
the function I 3 x −→ f(x)

x is either monotonic or unimodal ([22]).
Let us mention that the converse of the Hölder inequality theorem remains true

(cf. [14,16]) if the assumption (1.1) is replaced by the following one: the functions ϕ−1

and ψ−1 are multiplicatively conjugate, i.e. there exists a constant c > 0 such that

ϕ−1 (t)ψ−1 (t) = ct, t > 0.

These facts raise some questions concerning a characterization of the concept of
conjugacy.

4. CONJUGATE FUNCTIONS AND A GENERALIZED HÖLDER INEQUALITY

In this section we prove the following result.

Theorem 4.1. Let (Ω,Σ, µ) be a measure space with at least two disjoint sets
A,B ∈ Σ of finite and positive measures such that

logµ (B)

logµ (A)
is irrational number.

Suppose that ϕ,ψ : (0,∞) → (0,∞) are bijective, ϕ is continuous, and the functions
ϕ−1 and ψ−1 are conjugate, i.e.

ψ−1 = (ϕ−1)∗. (4.1)

Then

(i) the inequality (1.2)
∫

Ω

xydµ ≤ Pϕ(x)Pψ (y) , x, y ∈ S+,
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holds true if and only if there is p > 1 such that

ϕ (t) = ϕ (1) tp, ψ (t) = ψ (1) tq, where
1

p
+

1

q
= 1;

(ii) the inequality ∫

Ω

xydµ ≥ Pϕ(x)Pψ (y) , x, y ∈ S+,

holds true if and only if there is p < 1, p 6= 0, such that

ϕ (t) = ϕ (1) tp, ψ (t) = ψ (1) tq, where
1

p
+

1

q
= 1.

Proof. Put a := µ (A) and b := µ (B) . By assumption we have a, b ∈ R\ {0} and log b
log a

is irrational. Taking arbitrary x1, y1 > 0 and setting x := x1χA and y := y1χA in
(1.2), we get

ax1y1 ≤ ϕ−1 (aϕ (x1))ψ−1 (aψ (y1)) , x1, y1 > 0,

whence, replacing x1 and y1 by ϕ−1 (x1) and ψ−1 (y1) , respectively,

aϕ−1 (x1)ψ−1 (y1) ≤ ϕ−1 (ax1)ψ−1 (ay1) , x1, y1 > 0.

Hence, from (4.1) and the definition of the conjugate function, we get

aϕ−1 (x1) y1ϕ
−1

(
1

y1

)
≤ ϕ−1 (ax1) ay1ϕ

−1

(
1

ay1

)
, x1, y1 > 0,

that is,

ϕ−1 (x1)ϕ−1

(
1

y1

)
≤ ϕ−1 (ax1)ϕ−1

(
1

ay1

)
, x1, y1 > 0.

Putting
f := ϕ−1

and replacing here y1 by 1
ay1

we obtain

f (x1) f (ay1) ≤ f (ax1) f (y1) , x1, y1 > 0,

or, equivalently,
f (ay1)

f (y1)
≤ f (ax1)

f (x1)
, x1, y1 > 0.

Obviously it follows that there is a constant α > 0 such that

f (ax1)

f (x1)
= α, x1 > 0,

which can be written in the following form

f (at) = αf (t) , t > 0.
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By obvious induction, we hence get

f (amt) = αmf (t) , m ∈ N, t > 0.

Replacing here t by t/am we get

f
(
a−mt

)
= α−mf (t) , m ∈ N, t > 0.

It follows that
f (amt) = αmf (t) , m ∈ Z, t > 0,

where Z denotes the set of all integer numbers.
In the same way we get, for some constant β > 0,

f (bnt) = βnf (t) , n ∈ Z, t > 0.

From the last two equations we get

f (ambnt) = αmβnf (t) , m, n ∈ Z, t > 0. (4.2)

Since log b
log a is irrational, by the Kronecker theorem, the set

D := {ambn : m,n ∈ Z}

is dense in (0,∞). It follows that there exist two sequences (mk) and (nk) of integers
such that

lim
k→∞

amkbnk = 1, (4.3)

and, by the irrationality of log b
log a ,

lim
k→∞

|mk| = lim
k→∞

|nk| =∞.

The continuity of the function log at 1 and (4.3) imply that

lim
k→∞

(mk log a+ nk log b) = 0.

If follows that

lim
k→∞

(
mk

nk
log a+ log b

)
= lim
k→∞

mk log a+ nk log b

nk
= 0,

whence
lim
k→∞

mk

nk
= − log b

log a
. (4.4)

Applying (4.2), (4.3), and the continuity of f at point 1, we get

f (1) = lim
k→∞

f (amkbnk) = f(1) lim
k→∞

αmkβnk ,



546 Janusz Matkowski

and
lim
k→∞

αmkβnk = 1.

The same reasoning as in the case of (4.4) shows that

lim
k→∞

mk

nk
= − log β

logα
. (4.5)

From (4.4) and (4.5) we get
log β

logα
=

log b

log a
,

whence
logα

log a
=

log β

log b
.

Putting
1

p
:=

logα

log a
=

log β

log b
,

we have, of course, p 6= 0, and

α = a1/p, β = b1/p.

Hence, applying (4.2) with t = 1, we get

f (ambn) = f (1) (ambn)
1/p

, m, n ∈ Z.

The continuity of f and the density of the set D imply that

f (t) = f (1) t1/p, t > 0,

that is,
ϕ−1 (t) = ϕ−1 (1) t1/p, t > 0.

From (4.1) and the definition of conjugate functions we obtain

ψ−1 (t) = tϕ−1 (1)

(
1

t

)1/p

= ϕ−1 (1) t1−
1
p , t > 0.

Since ϕ and ψ are bijective, we have 1− 1
p 6= 0, 1. Thus

ψ−1 (t) = ψ−1 (1) t1/q, where
1

q
:= 1− 1

p
,

which shows that ϕ−1 and ψ−1 are the conjugate power functions.
Hence, as for arbitrary x1, x2, y1, y2 > 0, the functions

x := x1χA + x2χB , y := y1χA + y2χB

belong to S+, setting them into (1.2) gives

x1y1 + x2y2 ≤ (xp1 + xp2)
1/p

(yq1 + yq2)
1/q

, x1, x2, y1, y2 > 0,

where 1
p + 1

q = 1, that is, the simplest version of the Hölder inequality. This implies
that p > 1 and q > 1.

Since in the case of the reversed inequality the proof is analogous, we omit it.
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5. CONJUGATE FUNCTIONS, SUBADDITIVITY AND SUBHOMOGENEITY

Let (Ω,Σ, µ) be a measure space. Suppose that ϕ,ψ : (0,∞) → (0,∞) are bijective,
one of them is continuous, and the functions ϕ−1 and ψ−1 are conjugate, i.e.

ψ−1 = (ϕ−1)∗.

(Clearly, this equality and the continuity of ϕ or ψ imply that both these functions
are continuous.) Is it then true that, for all x, y ∈ S+,

Pϕ(x+ y) ≤ Pϕ (x) + Pϕ (y) , Pψ(x+ y) ≤ Pψ(x) + Pψ (y)?

Note that in the case when the measure space satisfies the following condition:
there are A,B ∈ Σ such that (1.1) holds, the answer is affirmative. Indeed, in this
case, according to the converse theorem for the Minkowski inequality (depending
on the measure space, without any regularity conditions on ϕ and ψ [15]) applied
separately for Pϕ and Pψ, there are p ≥ 1 and q ≥ 1 such that ϕ (t) = ϕ (1) tp,
ψ (t) = ψ (1) tq. The conjugacy condition implies that ϕ and ψ are the conjugate
power functions. Moreover, in this case, we have

Pϕ (tx) = tPϕ(x), Pψ (tx) = tPψ (x) , t > 0, x ∈ S+,

that is, the functionals Pϕ and Pψ are positively homogeneous.
Therefore to answer the question we have to consider the following two cases:

– the measure space (Ω,Σ, µ) is such that condition (2.5) is satisfied, that is, (Ω,Σ, µ)
is a generalized counting measure space;

– the measure space (Ω,Σ, µ) is such that

A ∈ Σ =⇒ µ (A) =∞ or µ (A) ≤ 1.

Remark 5.1. The Minkowski type inequality

Pϕ(x+ y) ≤ Pϕ (x) + Pϕ (y) , x, y ∈ S+,

that is, the subadditivity of Pϕ, implies that

Pϕ (x1 + . . .+ xn) ≤ Pϕ (x1) + . . .+ Pϕ (xn) , n ∈ N, x1, . . . , xn ∈ S+,

whence
Pϕ (nx) ≤ nPϕ (x) , n ∈ N, x ∈ S+,

which shows that Pϕ is n-subhomogeneous for every positive integer n. In the sequel
we shall be interested in the functionalsPϕ that satisfy (2.3) and are subhomogeneous,
that is, such that

Pϕ (tx) ≤ tPϕ (x) , x, y ∈ S+, t > 1. (5.1)
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In the case of a generalized counting measure space we have the following result.

Theorem 5.2. Let the measure space (Ω,Σ, µ) be such that condition (2.5) is satisfied.
Suppose that ϕ : (0,∞)→ (0,∞) is bijective, increasing, convex, geometrically convex
and satisfies (3.1). Then Pϕ satisfies (2.3) and (5.1).

Proof. Since ϕ : (0,∞) → (0,∞) is bijective, increasing, convex and geometrically
convex, by Theorem 1 of [13], the functional Pϕ satisfies (2.3).

To show the subhomogeneity of Pϕ take an arbitrary x ∈ S+, such that
µ (Ω(x)) > 0. Then there exists an n ∈ N, the pairwise disjoint sets A1, . . . , An ∈ Σ
of positive measure and x1, . . . , xn > 0 such that

x =
n∑

j=1

xjχAj
.

Put
aj := µ(Aj), j = 1, . . . , n.

According to the assumption on the measure space,

aj ≥ 1, j = 1, . . . , n.

By Lemmas 2.6 and 2.7, for every t > 1, the function ϕ ◦ (tϕ−1) is superadditive.
Therefore, for all t > 1,

n∑

j=1

ϕ(tϕ−1(ajxj)) ≤ ϕ


tϕ−1




n∑

j=1

ajxj




 .

Since, by Lemma 2.6, the function

(0,∞) 3 r 7−→ ϕ
(
tϕ−1(r)

)

r

is increasing and aj ≥ 1, j = 1, . . . , n, we have, for all t > 1,

ϕ
(
tϕ−1(xj)

)

xj
≤ ϕ

(
tϕ−1(ajxj)

)

ajxj
, j = 1, . . . , n,

whence
ajϕ

(
tϕ−1(xj)

)
≤ ϕ

(
tϕ−1(ajxj)

)
, j = 1, . . . , n.

Adding these inequalities by sides we get
n∑

j=1

ajϕ
(
tϕ−1(xj)

)
≤

n∑

j=1

ϕ
(
tϕ−1(ajxj)

)
,

and, consequently, for all t > 1,

n∑

j=1

ajϕ
(
tϕ−1(xj)

)
≤ ϕ

(
tϕ−1

( n∑

j=1

ajxj

))
.
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Since for all positive reals y1, . . . , yn the function
∑n
j=1 yjχAj

is in S+, we may replace
here xj by ϕ(xj) and making use of the increasing monotonicity of ϕ−1, we hence get

ϕ−1

( n∑

j=1

ajϕ (txj)

)
≤ tϕ−1

( n∑

j=1

ajϕ (xj)

)
,

which, by the definition of the functional Pϕ, means that Pϕ(tx) ≤ tPϕ(x) for all
t > 1 and x ∈ S. This completes the proof.

Taking
ϕ (t) = (t+ c)

q
tp, t > 0,

where c > 0, p > 1 and q > 1 are arbitrarily fixed (cf. Remark 2.4), and applying this
result, we obtain a broad class of pairs of nonpower functions ϕ and ψ such that Pϕ
and Pψ are subhomogeneous and subadditive.

Theorem 5.3. Let a measure space (Ω,Σ, µ) be such that (1, δ) ⊂ clµ (Σ) for some
δ > 1 and condition (2.5) is satisfied. Suppose that a bijective function ϕ : (0,∞) →
(0,∞) satisfies (3.1), ϕ−1 (0+) = 0. Then Pϕ is subadditive and subhomogeneous in
S+ if and only if ϕ is increasing, convex and geometrically convex.

Proof. Assume that Pϕ is subadditive. Take arbitrary A,B ∈ Σ, A∩B = ∅ of positive
and finite measure. Setting x = ϕ−1

(
s

µ(A)

)
, y = ϕ−1

(
t

µ(B)

)
in (2.3) we get

ϕ−1 (s+ t) ≤ ϕ−1 (s) + ϕ−1 (t) , s, t > 0.

Since ϕ−1 (0+) = 0, applying the main result of [24], we infer that ϕ is an increasing
homeomorphism of (0,∞).

The assumption (1, δ) ⊂ clµ (Σ) implies the existence of sets An ∈ Σ, n ∈ N, and
B ∈ Σ such An ∩ B = ∅ for all n ∈ N , limn→∞ µ (An) = 1 and 0 < µ (B) < ∞. Put
an := µ (An) for n ∈ N and b := µ (B) . Setting x := x1χAn

+x2χB , y := y1χAn
+y2χB

in (2.3) we get

ϕ−1 (anϕ (x1 + y1) + bϕ (x2 + y2)) ≤
≤ ϕ−1 (anϕ (x1) + bϕ (x2)) + ϕ−1 (anϕ (y1) + bϕ (y2))

for all x1, x2, y1, y2 > 0.
Making use of the just proved continuity of ϕ and ϕ−1, and letting n → ∞, we

hence get, for all x1, x2, y1, y2 > 0,

ϕ−1 (ϕ (x1 + y1) + bϕ (x2 + y2)) ≤
≤ ϕ−1 (ϕ (x1) + bϕ (x2)) + ϕ−1 (ϕ (y1) + bϕ (y2)) ,

and, to get convexity of ϕ, we can argue as in the proof of the second part of Lemma 2.8
(or apply Lemma 2.8 (ii) to a simple measure space). Now the “only if” part is a
consequence of Lemma 2.11.

The “if” part follows from the previous Theorem 5.2.
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In connection with this result we propose the following problem.

Problem 5.4. Suppose that ϕ : (0,∞) → (0,∞) is bijective, ϕ−1 and (ϕ−1)∗ are
subadditive and condition (3.1) is satisfied. Is it then true that

ϕ−1 (0+) = 0?

Now we consider the problem in the case when (Ω,Σ, µ) is a defected probability
space.

We shall need the following theorem.

Theorem 5.5. Let (Ω,Σ, µ) be a measure space such that µ(Ω) = 1 and there is
A ∈ Σ such that 0 < µ(A) < 1. Suppose that ϕ : (0,∞) → (0,∞) is bijective and
monotonic. Then inequality (2.3) holds true if and only if ϕ is increasing and the
function Φ : (0,∞)2 → (0,∞) defined by

Φ(s, t) := ϕ
(
ϕ−1(s) + ϕ−1(t)

)
, s, t > 0, (5.2)

is concave.

Proof. Suppose that ϕ satisfies (2.3). By Lemma 2.8, the function ϕ is increasing and,
consequently, ϕ is an increasing homeomorphism of (0,∞). Now the result follows from
the result in [3, p. 85–88] (see also [8]).

Remark 5.6. If the measure space (Ω,Σ, µ) is such that for every A ∈ Σ, we have
µ(A) ≤ 1 or µ(A) =∞, and ϕ : (0,∞)→ (0,∞) is increasing, bijective such that the
function Φ defined by (5.2) is concave, then inequality (2.3) is satisfied.

Indeed, from the concavity of function (5.2),

n∑

j=1

ajϕ
(
ϕ−1(xj) + ϕ−1(yj)

)
≤ ϕ

(
ϕ−1

( n∑

j=1

ajxj

)
+ ϕ−1

( n∑

j=1

ajyj

))

for all n ∈ N, aj , xj , yj > 0, j = 1, . . . , n, such that
∑n
j=1 aj = 1. Obviously, this

inequality remains true if
∑n
j=1 aj ≤ 1. Replacing here xj by ϕ(xj), yj by ϕ(yj),

j = 1, . . . , n, and making use of the monotonicity of ϕ, we obtain

ϕ−1

( n∑

j=1

ajϕ (xj + yj)

)
≤ ϕ−1

( n∑

j=1

ajϕ (xj)

)
+ ϕ−1

( n∑

j=1

ajϕ (yj)

)

for all n ∈ N, aj , xj , yj > 0, j = 1, . . . , n, such that
∑n
j=1 aj ≤ 1.

Take x, y ∈ S+. Then there exist n ∈ N, the pairwise disjoint sets Aj ∈ Σ of
positive measure and xj , yj > 0, j = 1, . . . , n, such that

x =
n∑

j=1

xjχAj
, y =

n∑

j=1

yjχAj
.

Putting aj := µ(Aj) for j = 1, . . . , n, we have
∑n
j=1 aj ≤ 1, and the last inequality

says that Pϕ (x+ y) ≤ Pϕ(x) + Pϕ (y) .
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The following lemma will be helpful in establishing a criterion for the concavity
of the function Φ defined by (5.2).

Lemma 5.7. Let ϕ : (0,∞) → (0,∞) is bijective, twice differentiable, ϕ′ > 0 and
ϕ′′ > 0 in (0,∞). Then the function Φ : (0,∞)2 → (0,∞) defined by (5.2) is concave,
if and only if the function ϕ′′

ϕ′ is decreasing, and ϕ′

ϕ′′ is superadditive, i.e.

ϕ′ (s+ t)

ϕ′′ (s+ t)
≥ ϕ′(s)
ϕ′′(s)

+
ϕ′(t)
ϕ′′(t)

, s, t > 0. (5.3)

Proof. For arbitrarily fixed s, t > 0 and all admissible u, v ∈ R define the function of
a single variable

F (τ) := Φ (s+ uτ, t+ vτ) = ϕ
(
ϕ−1(s+ uτ) + ϕ−1(t+ vτ)

)
.

The function Φ is concave if and only if for all s, t > 0 and all admissible u, v ∈ R we
have F ′′(0) ≤ 0 (cf. [3, p. 79–81]). Put f := ϕ−1. From the definition of F we have

f (F (τ)) = f(s+ uτ) + f(t+ vτ)

for τ in a neighborhood of 0. Hence we obtain

f ′ (F (0))F ′(0) = f ′(s)u+ f ′(t)v

and
f ′′ (F (0)) [F ′(0)]

2
+ f ′ (F (0))F ′′(0) = f ′′(s)u2 + f ′′(t)v2.

Eliminating F ′(0) from these two equalities, we get

[f ′ (F (0))]
3
F ′′(0) = Au2 − 2Buv + Cv2, (5.4)

where
A := f ′′(s) [f ′ (F (0))]

2 − f ′′ (F (0)) [f ′ (s)]
2
,

B := f ′′ (F (0)) f ′ (s) f ′ (t) ,

C := f ′′(t) [f ′ (F (0))]
2 − f ′′ (F (0)) [f ′ (t)]

2
.

Since ϕ′ is positive, we have f ′ (F (0)) > 0. From (5.4) we conclude that F ′′(0) ≤ 0 if
and only if

A ≤ 0, C ≤ 0, AC ≥ B2.

Note that

F (0) = ϕ
(
ϕ−1(s) + ϕ−1(t)

)
, f ′ ◦ ϕ =

1

ϕ′
, f ′′ ◦ ϕ = − ϕ′′

(ϕ′)3 .

It follows that, for all s, t > 0,

f ′ (F (0)) = f ′
(
ϕ
(
ϕ−1(s) + ϕ−1(t)

))
=

1

ϕ′ (ϕ−1(s) + ϕ−1(t))
,
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f ′′ (F (0)) = f ′′
(
ϕ
(
ϕ−1(s) + ϕ−1(t)

))
= − ϕ′′

(
ϕ−1(s) + ϕ−1(t)

)

[ϕ′ (ϕ−1(s) + ϕ−1(t))]
3 ,

f ′ (t) =
1

ϕ′ (ϕ−1 (t))
, f ′′ (t) = − ϕ′′

(
ϕ−1 (t)

)

[ϕ′ ((ϕ−1 (t)))]
3 .

Hence, by the definitions of the functions A,B,C, and replacing, for the simplicity of
notations, s by ϕ(s), t by ϕ (t) , we obtain

A ≤ 0⇐⇒ ϕ′′ (s+ t)

ϕ′ (s+ t)
≤ ϕ′′(s)
ϕ′(s)

, C ≤ 0⇐⇒ ϕ′′ (s+ t)

ϕ′ (s+ t)
≤ ϕ′′(t)
ϕ′(t)

,

that is, A ≤ 0 and C ≤ 0 if and only if ϕ
′′

ϕ′ is decreasing, and

AC ≥ B2 ⇐⇒ ϕ′′ (s+ t)

[ϕ′ (s+ t)]
3

ϕ′′(s)

[ϕ′(s)]3
ϕ′′(t)

[ϕ′(t)]3

(
ϕ′ (s+ t)

ϕ′′ (s+ t)
− ϕ′(s)
ϕ′′(s)

− ϕ′(t)
ϕ′′(t)

)
≥ 0

for all s, t > 0.

From this lemma we obtain the following proposition (cf. [8]).

Proposition 5.8. Let ϕ : (0,∞) → (0,∞) be bijective, twice differentiable with
positive first and second derivatives in (0,∞). If ϕ′

ϕ′′ is superdadditive, i.e. inequality
(5.3) is satisfied, then Φ defined by (5.2) is concave.

Example 5.9. Assume that a measure space (Ω,Σ, µ) is such that µ(Ω) = 1 and
there is A ∈ Σ such that 0 < µ(A) < 1. Consider the function ϕ : (0,∞) → (0,∞)
defined by

ϕ(t) :=
t3

t+ 1
, t > 0.

It is easy to see that ϕ is bijective and satisfies (3.1). Making simple calculations we
have

ϕ′(t) =
t2 (2t+ 3)

(t+ 1)
2 , ϕ′′(t) =

2t
(
t2 + 3t+ 3

)

(t+ 1)
3 ,

ϕ′(t)
ϕ′′(t)

=
t (t+ 1) (2t+ 3)

2 (t2 + 3t+ 3)

for t > 0. Thus ϕ′ and ϕ′′ are positive and, as the function

(0,∞) 3 t 7−→
ϕ′

ϕ′′ (t)

t
=

(t+ 1) (2t+ 3)

2 (t2 + 3t+ 3)

is increasing, by Lemma 2.7, the function ϕ′

ϕ′′ is superadditive (that is, inequality
(5.3) is satisfied). Thus, in view of Proposition 2 and Theorem 8, the functional Pϕ
is subadditive. Since

ϕ′′ (t)
ϕ′ (t)

t = 1 +
t+ 3

2t2 + 5t+ 3
, t > 0,
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the function ϕ′ is geometrically concave (cf. Remark 2.2). In view of Lemma 2.9, the
functional Pϕ is also subhomogeneous.

From the definition of ϕ we have

t =

[
ϕ−1 (t)

]3

ϕ−1 (t) + 1
, t > 0,

whence
1

t
=

[
ϕ−1( 1

t )
]3

ϕ−1( 1
t ) + 1

, t > 0,

or, equivalently,
1

t
=

1
t3

[
tϕ−1

(
1
t

)]3
1
t

[
tϕ−1

(
1
t

)]
+ 1

, t > 0.

By the definition of (ϕ−1)∗, we hence get

1

t
=

1
t3

[
(ϕ−1)∗ (t)

]3
1
t [(ϕ−1)∗ (t)] + 1

, t > 0,

that is, [
(ϕ−1)∗ (t)

]3 − t(ϕ−1)∗ (t)− t2 = 0, t > 0.

Putting here ψ :=
(
(ϕ−1)∗

)−1 we get

[
ψ−1 (t)

]3 − tψ−1 (t)− t2 = 0, t > 0,

whence, replacing t by ψ (t), we obtain

t3 − ψ (t) t− [ψ (t)]
2

= 0, t > 0.

It follows that, for every t > 0, either ψ(t) = 1
2 t
(√

4t+ 1− 1
)

or ψ(t) =

− 1
2 t
(√

4t+ 1 + 1
)
. Since ψ is continuous and increasing, we conclude that

ψ(t) =
1

2
t
(√

4t+ 1− 1
)
, t > 0.

Of course, ψ : (0,∞) → (0,∞) is bijective, twice differentiable and, it is easy to see
that, ψ′ and ψ′′ are positive (the bijectivity, increasing monotonicity and convexity
of ψ follow from Property 5.a). Moreover, we have

ψ′(t)
ψ′′(t)

=
(4t+ 1)

(
6t+ 1−

√
4t+ 1

)

4 (3t+ 1)
, t > 0.

Since (
ψ′

ψ′′ (t)

t

)′
=

√
4t+ 1

(
6t2 + 4t+ 1

)
− 6t2 − 6t− 1

4t2 (3t+ 1)
2 > 0, t > 0, (5.5)
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the function

(0,∞) 3 t 7−→
ψ′

ψ′′ (t)

t
=

(4t+ 1)
(
6t+ 1−

√
4t+ 1

)

4t (3t+ 1)

is increasing. Hence, by Lemma 2.7, the function ψ′

ψ′′ is superadditive. Thus, in view
of Proposition 5.8 and Theorem 5.5, the functional Pψ is subadditive.

Since according to (5.5)
(
ψ′′ (t)
ψ′ (t)

t

)′
< 0, t > 0,

it follows from Remark 2.2 that the derivative ψ′ is geometrically concave. In view of
Lemma 2.9, the functional Pψ is subhomogeneous.

This example proves the following proposition.

Proposition 5.10. If the measure space (Ω,Σ, µ) is such that µ (Ω) = 1 and 0 <
µ (A) < 1 for some A ∈ Σ, then there are conjugate nonpower bijections ϕ−1, ψ−1 of
(0,∞) such that Pϕ and Pψ are subadditive and subhomogeneous.

This proposition and, first of all, our consideration related to Example 5.9 raise
the following problem.

Problem 5.11. Let ϕ : (0,∞)→ (0,∞) be bijective, twice differentiable with positive
first and second derivatives such that conditions (3.1) are satisfied. Then, in view of
Property 5a and Remark 5.13, the function ψ =

(
(ϕ−1)∗

)−1 has the same properties.
Suppose that ϕ′

ϕ′′ is superdadditive. Is then
ψ′

ψ′′ superdadditive?

In connection with this problem we prove the following remark.

Remark 5.12. Let a bijection ϕ : (0,∞)→ (0,∞) satisfying (3.1) be twice differen-
tiable with ϕ′ > 0, ϕ′′ > 0. Putting ψ =

(
(ϕ−1)∗

)−1 we have (ϕ−1)∗ ((0,∞)) = (0,∞)
and

ϕ′
(

t
ψ(t)

)

ϕ′′
(

t
ψ(t)

) [ψ(t)]
3

[ψ(t)− tψ′(t)]2
=
ψ′(t)
ψ′′(t)

, t > 0.

Proof. We have ψ−1 = (ϕ−1)∗, that is,

ψ−1 (t) = tϕ−1
(1

t

)
, t > 0.

Since
ϕ

(
t

ψ(t)

)
=

1

ψ (t)
, t > 0,

differentiating the both sides gives

ϕ′
(

t

ψ(t)

)
ψ(t)− tψ′(t)

[ψ(t)]
2 = − ψ′(t)

[ψ (t)]
2 , t > 0,



Conjugate functions, Lp-norm like functionals, the generalized Hölder inequality. . . 555

that is,

ϕ′
(

t

ψ(t)

)
(ψ(t)− tψ′(t)) = −ψ′(t), t > 0, (5.6)

whence
ϕ′
(

t

ψ(t)

)
ψ(t) = ψ′(t)

(
tϕ′
(

t

ψ(t)

)
− 1

)
, t > 0. (5.7)

Differentiating both sides of (5.6) we get

ϕ′′
(

t

ψ(t)

)
[ψ(t)− tψ′(t)]2

[ψ(t)]
2 − tϕ′

(
t

ψ(t)

)
ψ′′(t) = −ψ′′(t), t > 0,

whence

ϕ′′
(

t

ψ(t)

)
[ψ(t)− tψ′(t)]2

[ψ(t)]
2 = ψ′′(t)

(
tϕ′
(

t

ψ(t)

)
− 1

)
, t > 0.

Dividing the respective sides of (5.7) and this equation we get

ϕ′
(

t
ψ(t)

)

ϕ′′
(

t
ψ(t)

) [ψ(t)]
3

[ψ(t)− tψ′(t)]2
=
ψ′(t)
ψ′′(t)

, t > 0.

Remark 5.13. From the equality ψ−1 = (ϕ−1)∗ we easily get

1

ψ′ (ψ−1 (t))
= ϕ−1

(1

t

)
− 1

t

1

ϕ′
(
ϕ−1( 1

t )
) , t > 0,

and
ψ′′
(
ψ−1 (t)

)

[ψ′ (ψ−1 (t))]
3 =

1

t3
ϕ′′
(
ϕ−1

(
1
t

))
[
ϕ′
(
ϕ−1

(
1
t

))]3 , t > 0.

Since
ϕ−1

(
1

ψ (t)

)
=

t

ψ (t)
, t > 0,

replacing here t by ψ (t) , we get

ψ′′ (t)

[ψ′ (t)]3
=

1

[ψ (t)]
3

ϕ′′
(

t
ψ(t)

)

[
ϕ′
(

t
ψ(t)

)]3 , t > 0.

Problem 5.14. Let ϕ : (0,∞)→ (0,∞) be bijective, increasing and such that (3.1)
is fulfilled. Suppose that the function Φ : (0,∞)

2 → (0,∞) defined by (5.2) is concave.
For ψ :=

(
(ϕ−1)∗

)−1 define Ψ : (0,∞)2 → (0,∞) by

Ψ (s, t) := ψ
(
ψ−1 (s) + ψ−1 (t)

)
, s, t > 0.

Is the function Ψ concave?
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6. YOUNG CONJUGATE FUNCTIONS

Let us quote (cf. [28, 29]) some well known properties of Young conjugate functions:

Lemma 6.1. Suppose that ϕ : (0,∞) → (0,∞) is continuously differentiable with
strictly increasing derivative and conditions (3.1) are fulfilled. Then:

(i) ϕ and ϕ′ are strictly increasing mapping (0,∞) onto (0,∞);
(ii) the function ψ : (0,∞)→ (0,∞) , Young conjugate (complementary) function to

ϕ, defined by

ψ(t) :=

t∫

0

(ϕ′)
−1

(s) ds, t > 0,

(where (ϕ′)−1 is the inverse function of ϕ′) is continuously differentiable, ψ′ is
strictly increasing and

lim
t→0+

ψ(t)

t
= 0, lim

t→∞
ψ(t)

t
=∞;

(iii) ψ′ = (ϕ′)−1
;

(iv) for every t > 0,

ψ(t) = sup {st− ϕ(s) : s > 0} , ϕ(t) = sup{st− ψ(s) : s > 0};

(v) (the Young inequality) for all u, v > 0,

uv ≤ ϕ (u) + ψ (v) ;

(vi) if ϕ and ψ are Young conjugate and one of them is a power function, then there
is p > 1 such that

ϕ (t) = ϕ (1) tp, ψ (t) = ψ (1) tq, t > 0, (6.1)

where
1

p
+

1

q
= 1. (6.2)

We shall prove the following theorem.

Theorem 6.2. Suppose that ϕ : (0,∞)→ (0,∞) is differentiable with strictly increas-
ing derivative and conditions (3.1) are fulfilled. If ϕ is geometrically convex (resp. ge-
ometrically concave), then its Young complementary function is geometrically concave
(resp. geometrical convex ).

Proof. The Darboux property of the derivative implies that ϕ is continuously dif-
ferentiable. Let ψ : (0,∞) → (0,∞) be the Young complementary function for ϕ,
i.e.

ψ (t) = sup{st− ϕ(s) : s > 0}, t > 0.
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Hence, by the differentiability and convexity of ϕ, we get

ψ (ϕ′ (t)) = tϕ′ (t)− ϕ (t) , t > 0. (6.3)

By Lemma 6.1 (iii), we have

ψ′ (ϕ′ (t)) = t, t ∈ (0,∞).

Hence, making use of (6.3), we get

ψ′ (ϕ′ (t))
ψ (ϕ′ (t))

ϕ′ (t) =
tϕ′ (t)

tϕ′ (t)− ϕ (t)
, t > 0. (6.4)

Now suppose that ϕ is geometrically convex. Then (cf. Remark 2.2) the function

(0,∞) 3 t 7−→ tϕ′ (t)
ϕ (t)

is increasing.

It follows that

(0,∞) 3 t 7−→ tϕ′ (t)− ϕ(t)

tϕ′ (t)
= 1− ϕ (t)

tϕ′ (t)
is increasing,

and, consequently, the function

(0,∞) 3 t 7−→ tϕ′ (t)
tϕ′ (t)− ϕ (t)

is decreasing.

Since ϕ′ is increasing, from (6.4) we conclude that the function

(0,∞) 3 t 7−→ tψ′ (t)
ψ (t)

is decreasing,

which proves that ψ is geometrically concave.

Corollary 6.3. Suppose that ϕ : (0,∞) → (0,∞) is bijective, increasing, differen-
tiable, strictly convex and conditions (3.1) are fulfilled. If ϕ and its Young comple-
mentary function ψ are geometrically convex, then there exists p > 1 such that (6.1)
and (6.2) hold true.

Proof. By assumption, the function ψ is geometrically convex and, by Theorem 6.2,
it is geometrically concave. Thus ψ is geometrically affine and, in view of Remark 2.2,
it is a power function. Now the result follows from Lemma 6.1.

Theorem 6.4. Suppose that ϕ : (0,∞)→ (0,∞) is twice differentiable, strictly con-
vex and conditions (3.1) are fulfilled. If ϕ′ is geometrically convex (resp. geometrically
concave), and ψ is the Young complementary function for ϕ, then ψ′ is geometrically
concave (resp. geometrically convex ).
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Proof. Assume that ϕ′ is geometrically convex. As in the proof of Theorem 6.2, we
have ψ′ (ϕ′ (t)) = t for t ∈ (0,∞), whence

ψ′′ (ϕ′ (t))ϕ′′ (t) = 1, t > 0.

These relations imply that

ψ′′ (ϕ′ (t))
ψ′ (ϕ′ (t))

ϕ′ (t) =

(
ϕ′′ (t)
ϕ′ (t)

t

)−1

, t > 0.

Since ϕ′ is strictly increasing and, by geometrical convexity of ϕ′, the function

(0,∞) 3 t 7−→ ϕ′′ (t)
ϕ′ (t)

t is increasing,

we infer that the function

(0,∞) 3 t 7−→ ψ′′ (t)
ψ′ (t)

t is decreasing,

and, consequently, ψ′ is geometrically concave. This completes the proof.

Theorem 6.5. Let (Ω,Σ, µ) be a measure space such that

A ∈ Σ ⇒ µ(A) ≤ 1 or µ(A) =∞,

and suppose that there are two sets B,C ∈ Σ such that

0 < µ(B) < µ(C) = 1.

Suppose that ϕ : (0,∞)→ (0,∞) is twice differentiable with strictly increasing deriva-
tive, conditions (3.1) are fulfilled, and ψ is the Young conjugate function to ϕ. If Pϕ
and Pψ are subhomogeneous, then ϕ and ψ are the conjugate power functions.

Proof. In view of Lemma 2.9, Lemma 6.1, the subhomogeneity of Pϕ and Pψimplies
that ϕ′ and ψ′ are geometrically concave. By Theorem 10 the function ψ′ is geometri-
cally convex. Thus ψ′ is geometrically affine and, by Remark 2.2 it is a power function.
Now Lemma 6.1 implies that both ϕ and ψ are conjugate power functions.

Similarly, applying Lemma 2.11 and Theorem 6.2, we obtain the following result.

Theorem 6.6. Let (Ω,Σ, µ) be a measure space such that (2.5) holds and, for some
δ > 1,

(1, δ) ⊂ cl (µ(Σ)) .

Suppose that ϕ : (0,∞) → (0,∞) is strictly increasing, differentiable, ϕ′ is strictly
increasing, (3.1) holds and ψ is the Young conjugate to ϕ. If Pϕ and Pψ are subho-
mogeneous, then ϕ and ψ are the conjugate power functions.

Acknowledgments
The author would to thank an anonymous referee for very careful reading the
manuscript and several constructive remarks.



Conjugate functions, Lp-norm like functionals, the generalized Hölder inequality. . . 559

REFERENCES

[1] G. Aumann, Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelw-
erten, S.-B. Math.-Naturw. Abt. Bayer. Akad. Wiss. München, (1933), 405–413.

[2] Z. Dároczy, Zs. Páles, Convexity with given infinite weight sequences, Stochastica 11
(1987), 5–12.

[3] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 2nd
ed., 1952.

[4] E. Hille, R.S. Phillips, Functional Analysis and Semigrops, American Mathematical
Society Publications 31, A.M.S., Providence, R.I., 1957.

[5] W. Jarczyk, J. Matkowski, On Mulholland’s inequality, Proc. Amer. Math. Soc. 130
(2002), 3243–3247.

[6] M. Kuczma, An Introduction to the Theory of Functional Equations and In-
equalities, Cauchy’s Equation and Jensen’s Inequality, P.W.N, Uniwersytet Śląski,
Warszawa-Kraków-Katowice, 1985.

[7] J. Matkowski, On a characterization of Lp-norm, Ann. Polon. Math. 50 (1989),
137–144.

[8] J. Matkowski, The converse of the Minkowski’s inequality theorem and its generaliza-
tion, Proc. Amer. Math. Soc. 109 (1990), 663–675.

[9] J. Matkowski, A functional inequality characterizing convex functions, conjugacy and a
generalization of Hölder’s and Minkowski’s inequalities, Aequationes Math. 40 (1990),
168–180.

[10] J. Matkowski, A generalization of Hölder’s and Minkowski’s inequalities and conjugate
fubctions, Constantin Carathéodory: An International Tribute, Th.M. Rassias (Ed.),
1991 World Scientific Publ. Co., 819-827.

[11] J. Matkowski, Functional inequality characterizing concave functions in (0,∞)k, Ae-
quationes Math. 43 (1992), 219–224.

[12] J. Matkowski, Lp-like paranorms, in Selected Topics in Functional Equations and Iter-
ation Theory, Proceedings of the Austrian-Polish Seminar, Universität Graz, October
24–26, 1991, D. Gronau and L. Reich (Eds.), Grazer Math. Ber. 316 (1992), 103–138.

[13] J. Matkowski, On a generalization of Mulholland’s inequality, Abh. Math. Sem. Univ.
Hamburg 63 (1993), 97–103.

[14] J. Matkowski, The converse of the Hölder inequality and its generalizations, Studia
Math. 109 (1994) 2, 171–182.

[15] J. Matkowski, On a characterization of Lp-norm and a converse of Minkowski’s in-
equality, Hiroshima Math. J. 26 (1996), 277–287.

[16] J. Matkowski, The converse of a generalized Hölder inequality, Publicationes Math.
Debrecen 50 (1997), 135–143.

[17] J. Matkowski, The converse theorem for Minkowski’s inequality, Indag. Math. (N.S.)
15 (2004) 1, 73–84.



560 Janusz Matkowski

[18] J. Matkowski, The converse theorem for the Minkowski inequality, J. Math. Anal. Appl.
348 (2008), 315–323.

[19] J. Matkowski, A converse of the Hölder inequality theorem, Math. Inequal. Appl. 12
(2009) 1, 21–32.

[20] J. Matkowski, Subadditive periodic functions, Opuscula Math. 31 (2011) 1, 75–96.

[21] J. Matkowski, The Pexider type generalization of the Minkowski inequality, J. Math.
Anal. Appl. 393 (2012), 298–310.

[22] J. Matkowski, Conjugate functions and a short proof of a property of convex functions,
(to appear).

[23] J. Matkowski, Subhomogeneity and subadditivity of the Lp-norm like functionals,
J. Math. Anal. Appl. 404 (2013), 172–184.

[24] J.Matkowski, T. Świątkowski, Quasi-monotonicity, subadditive bijections of R+ and
characterization of Lp-norm, J. Math. Anal. Appl. 154 (1991), 493–506.

[25] H.P. Mulholland, On generalizations of Minkowski’s inequality in the form of a triangle
inequality, Proc. London Math. Soc. 51 (1950), 294–307.

[26] C.T. Ng, Functions generating Schur-convex sums, General Inequalities 5 (Oberwolfach,
1986), 433–438, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel, 1987.

[27] M. Pycia, Linear functional inequalities – a general theory and new special cases, Dis-
sertationes Math. 438 (2006), 62pp.

[28] M.M. Rao, Z.D. Ren, Theory of Orlicz spaces, Marcel Dekker, Inc., New York-Basel-
-Hong Kong, 1991.

[29] A.W. Roberts, D.L. Varberg, Convex Functions, Academic Press, New York and Lon-
don, 1973.

[30] R.A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1950), 227–247.

Janusz Matkowski
J.Matkowski@wmie.uz.zgora.pl

University of Zielona Góra
Faculty of Mathematics, Computer Science and Econometrics
ul. Szafrana 4a, 65-516 Zielona Góra, Poland

Silesian University
Institute of Mathematics
ul. Bankowa 14, 40-007 Katowice, Poland

Received: March 11, 2013.
Revised: January 19, 2014.
Accepted: February 4, 2014.


