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The primary importance of the paper is the application of the efficient formula-
tion for the simulation of open-loop lightweight robotic manipulator. The framework
employed in the paper makes use of the spatial operator algebra and the associated
equations are expressed in joint space. This compact representation of the manipu-
lator dynamics makes it possible to solve the robot forward and inverse dynamics
problems in a recursive and fast manner. In the current form, the presented algorithm
can be applied for the dynamics simulation of an open-loop chain system possessing
any number of joints. Specifically, the formulation has been successfully applied for
the analysis of the 7DOF KUKA LWR robot. Results from a number of test cases
for the robot demonstrate the verification of the calculations.

1. Introduction

Computational efficiency of multibody system dynamic simulations has
been receiving increasing attention from researchers since seventies, mainly
from the robotics field [1], [2], [3]. Further developments in this field can
be seen in the multitude of efficient O(n) (n — number of bodies) recursive
sequential algorithms for analysis of tree-like topology rigid body dynamics.
The mentioned works are not limited to [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13]. Some researchers developed recursive order O(n)’ formulations
dynamics simulations of multibody systems with closed loops [14], [15], [16],
[17]. The recursive sequential algorithms gave basis for further development
of efficient low order formulations that are readily exploited up to date.
To meet requirements for high-fidelity performance and accurate dynamics
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simulations of complex systems, it has become a practice to apply efficient,
low order algorithms designed both for sequential and parallel computations.
The parallel strategies enabled to decrease the turnaround time associated
with computer simulations and even achieve results in real-time. The first
attempts to exploit parallel strategies can be found in [18], [19], [20], [21],
[22], [23]. More recent ideas regarding parallel algorithms for multi-body
dynamics simulations can be found in [24], [25], [26], [27], [28], [29], [30],
[31]. The latest comparative study on efficient sequential and parallel multi-
body dynamics algorithms can be found in [32] and in recent books [33],
[34].

In this paper, we discuss an approach based on the spatial operator al-
gebra [35] that allows to obtain the equations of motion of a system in a
compact matrix form. Manipulator is treated as a multibody system with
rigid bodies and the equations are formulated in joint coordinates. Currently,
for simplicity, neither actuator dynamics, nor joint elasticity are considered
but they can be readily included in the formulation at the price of greater
complexity of the system. The theoretical basis of the spatial operator algebra
is concisely recalled in the paper. The primary objective of this work is the
application of the efficient recursive formulae for the analysis of the KUKA
lightweight robotic (LWR) manipulator. Such a procedure is usually a first
step in the development of various robot controllers.

This paper is divided into six sections. Following the introduction and the
extensive literature review in section 1, section 2 presents the recursive O(n)
algorithm in the spatial operator algebra framework. Section 3 is devoted to
algorithmic steps within the formulation. Section 4 presents the numerical
results associated with the simulation of the LWR robot as well as efficiency
measurements. Section 5 is devoted to discussion. Summary and conclusions
are presented in last section.

2. Algorithm formulation
Equations of motion for serial chains

Matrix-form equation of motion of a manipulator consisting of »n rigid
links can be written in a form [36]:

D(@)4 + C(q. )q + G(q) + Q(q.q) = T(q.q), )

where q € R™! is a vector of joint coordinates, D(q) € R™" is the inertia
matrix of the manipulator, C(q, q) € R™" is the Coriolis/centrifugal matrix,
G(q) € R™! is the gravity vector, Q(q,q) € R™! is a vector of external
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forces acting on links and vector T(q, ¢) € R™! contains driving torques at
joints.

Figure 1 shows a pair of bodies connected with the revolute joint. Based
on [37] we use the following notation: ¢g; is the relative rotational coordinate
between links i and j, while j =i+ 1; s;; and s;; are vectors locating joint
attachment points in links 7 and j; h;; is the unit vector along rotational
axis of the joint defined in the 71" frame. Centroidal frames on links i and
j are mr; and 7r; while 7" and 7r are joint frames on links 7 and j; m is
the global reference frame C; and C,; are transformation matrices: from the
frame 7}’ to #r; and from #/ to 7. A7, and A, are transformation matrices:
from the frame 7’/ to 7" and from n; to 7. Vectors with the prime symbol
are expressed in centroidal frames, with the double prime symbol — in joint
frames, without any symbol — in global reference frame.

20

Fig. 1. Pair of bodies connected by a revolute joint

Position of the center of mass of the link ;j expressed in the global
reference frame my is given by:

r, = r;+r;, 2)
where:
rij = S," — Sj,', (3)
sij = A, 4)
Sjl' = A]Sﬂ, (5)
and the term:
Aj = ACyATCE (6)
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is the transformation matrix from the frame 71;- to 7.

Rotational axis of the j-th joint is given by vector:

h,’j = A,C,]h:; (7)
Velocity of the j-th link expressed in matrix form is:
r; .
V;= = B;;V:+Hjq;, 3)
W;

where r; is the linear velocity of the center of mass and w; is the angular
velocity, while B;; and H; are shift and joint space matrices, respectively
and are defined in the Appendix.

Differentiating Eq. (8) with respect to the time allows us to obtain ac-
celeration of link j as:

W;

VF[G}ZBWﬁEM+m%wa 9)
Matrices B; 7 and H ; are defined in the Appendix.
Velocity equations (8) for all n links can be written jointly in a form:
V = BV+Hq, (10)
which can be expressed as:
V = ©®Hq. (11)

Again, the matrices B, H and ® are defined in the Appendix.
Similarly, jointly written equations (9) for all n links have a form:

\4

BV + BV + Hg + Hq = (12)
BV + B®Hq + Hi + Hq,

which can be transformed into:
V = ®(B®H + H)q + Hg), (13)

where B and H are the time derivatives of B and H.
The equation of motion for the link j can be written as follows:

MjVj = Flj—BkoJk-FQJVJ'FFG]‘FFQJ, (14)

where: i = j— 1, k = j+ 1, M; is the j-th link mass and inertia matrix, €2;
is defined in the Appendix, Fg; contains gravitational force, F¢; contains
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Fig. 2. Forces acting on j-th body

external force and torque acting on the center of mass of j-th link, Fj is
the force exerted by the j-th link on the k-th link. All forces are depicted on
Figure 2.

Hence, the i-th link acts on the j-th link with a force:

Fij = MjVj+B?ijk—QjV]'—FGj—FQj. (15)

Equations of motion (15) for the whole chain can be written compactly
as:

F = MV +B’F-QV-Fg - Fg, (16)
which could be easily transformed to:
F = ®'(MV-QV-Fg-Fp). (17)

The power-balance equation for a single link bring us to the following
relation:

H;F,‘j = Tj, (18)

where 7; is a scalar value of driving torque at joint ;.
For n links the relation becomes:

H’F = T, (19)

where T contains driving torques at joints.
Substituting (17) into (19):

H'®" MV -QV-F;-Fgy) = T. (20)
Then, substituting (13) and (11) into (20):

HT(I)T(M(I)((Bd)H + H)q + Hj) - Q®Hq - F¢ - FQ) =T 1)



284 LUKASZ WOLINSKI, PAWEE. MALCZYK

and transforming it:

H ®"M®H{ + H @' M®B®H + H - QOH)q+

22
+H' ®"(-Fg) + H®"(-Fg) = T 22)

finally leads to:
D(q)4q + C(q,q)q + G(q) + Q(q,q9) = T(q,q), (23)

where:

D(q = H'®"M®H, (24)
Clq.q = HT<I>T(M<I>(B<I>H +H) - Qd)H), (25)
G(qg = H'®'(-Fo), (26)
Qq.q) = H'®'(-Fy). 27)

One should also point out that special algorithms exist for the efficient
mass matrix D(q) factorization [38] but this issue is beyond the scope of this
paper. In the paper, we used fast algorithms for mass matrix inversion.

The equations of motion (23) describe the open-loop manipulator dynam-
ics in joint space. The analysis of the systems with closed-loop chains (such
as dual-arm manipulation) requires extension of the formalism and addition
of loop-closure equations. The usual technique applied here relies on the
cut joint method [39]. However, the simulation of such systems changes the
class of the problem and will not be discussed here. Although the equations
(23) are expressed in a compact vector-matrix form, one should note that
the components of these quantities are derived recursively along the chain
of the manipulator. The inherent advantage of the representation (23) lies in
the convenience of manipulator model analysis and control system synthesis.

3. Algorithmic steps

To calculate the matrices D(q), C(q, q), G(q) and Q(q, q) the following
algorithm is used:

1. Start with initializing matrices H = Ogyxs, H = Oguxs, B = Ogpxon, ® =
Lonxens M = Oguxens 2 = Oonxon> F = Oenx1 and Fg = 0g,x1. Set j = 1.

2. Calculate H; (37) and H; (39). Put them in rows 6 -5 to 6 and column
j of H and H. Calculate M ; (45) and Q; (47). Put them in rows 65 — 5
to 6, and columns 67— 5 to 65 of M and Q. Calculate Fg; (49) and Fq;
(50). Put them in rows 65 — 5 to 6 of Fg and Fyq.
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3. Check if condition j > 1 is true. If not, skip this point. If yes, then set
i = j— 1. Next, calculate B;; (36), Bij (38) and ®; = B;;®; where ®; is
made of rows 65 —5 to 65 and columns 1 to 6i of ®. Put B,-j in rows
67— 5 to 6 and columns 6i — 5 to 61 of B. Put ®; in rows 6 -5 to 6]
and columns 1 to 6i of ®@.

4. Set j=j+1.1If j <n, then go to step 2, else go to step 5.

5. Calculate D(q) (24), C(q, q) (25), G(q) (26) and Q(q,q) (27).

Having completed the algorithmic steps, one can obtain a numerical form
of Eq. (1). It can be used to solve the inverse or forward dynamics problem.

4. Numerical examples
4.1. Preliminaries

KUKA LWR 4+ (depicted in Fig. 3) is a 7-degree of freedom light-weight
robot. It is intended both for industrial as well as research applications. Re-
dundant anthropomorphic structure gives the robot, among other properties,
the ability to avoid obstacles. Manipulator dynamic model will serve as a
basis for various model based controllers and also to address manipulation
and motion planning algorithms.

Fig. 3. KUKA LWR 4+ robot. Source: http://tmr.meil.pw.edu.pl

Kinematic data for the model was obtained from the official KUKA
documentation. Dynamic parameters of the links are not available yet, but
recently nonlinear combinations of parameters (dynamic coefficients) used in
the control system by KUKA were identified in [40], and extended in [41].
For the purpose of this work (to present the algorithm) the approximation of
the parameters were used. Data are shown in the Appendix.

The algorithm was implemented in the Scilab environment and used to
solve inverse and forward dynamics problem for the KUKA robot.
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J5 =

Fig. 4. Joint numbering of the KUKA LWR 4+ robot. Source: [42]

4.2. Inverse dynamics

The first numerical test case is associated with the problem of recon-
structing the internal torques T from the motion specified at joints. In the
inverse dynamics simulation all joints were set to move along the same
trajectory for 14 seconds (similarly as in [40]):

T T .
qdj(t):zcos(7t) =17, (28)

. (.
qdj(t):—ﬁs1n(7t) i=1,...1, (29)

with the initial conditions:

A (30)
R (31)

One should note that the inverse dynamics problem is a pure algebraic
task. The efficiency of joint space formulation is used here to minimize
the number of arithmetic operations. The motion of all joints in the 7-DOF
manipulator were simulated but for the sake of clarity only the time history
of calculated torque for the axis 1 is presented in Fig. 5. It can be noted that
the generated torque timeplot is smooth and symmetric, which is an expected
result for this simulation. Similar results were obtained for other axes.
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Fig. 5. Driving torque at joint 1

4.3. Forward dynamics

The forward dynamics problem deals with the task of predicting the
motion of the system from known external forces and torques. To verify the
algorithm, a model of the KUKA manipulator was created in ADAMS com-
mercial software that is a solver for multibody dynamics simulation. Then,
Scilab and ADAMS were set to simulate manipulator motion for 14 seconds.
Driving torques at joints were specially designed to assure the smooth motion
of the system. Independent joint PD controllers were used in the form:

Tj=ki(qaj—q) +ciGa;—q) J=1,....7, (32)

where g4, and g4, are defined in (28) and (29), and the initial conditions are
(30) and (31). Torsional stiffness k and torsional damping ¢ that are physical
representations of control gains in PD controllers associated with joints were
chosen experimentally as:

N

k = [10 1000 200 100 10 10 10]T£, (33)
r kg-m

¢ = [1000 10000 1000 1000 10 10 10]" £=. (34)

One should point out that the torques obtained from the control law (32),
together with the assumed constants (33), (34) should be similar to the time
histories recorded in the inverse dynamics simulation (Fig. 5).

The choice of the simple PD controller is associated with two main rea-
sons. Firstly, we wish to ensure reasonable torques as the inputs to the model.
The application of random torques as the inputs to the model would presum-
ably lead to chaotic motion and unreliable results. Secondly, the integrator
procedure is of finite order and may generate numerical errors during the
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course of simulation. The PD controller keeps the error bounded. It should
be noted that the evaluation of joint torques is based only on the PD con-
troller. There is no inverse dynamics algorithm involved in the specification
of control torques.

The commercial package ADAMS defines and solves the equations of
motion for a multibody system in a form of differential-algebraic equations.
The differential part is connected to the dynamics of the system, where-
as, the algebraic part is associated with constraint equations imposed on the
motion of the bodies. To guarantee that the provided solutions of differential-
algebraic equations are reliable, specialized procedures exist in ADAMS envi-
ronment. In the simulation, we used Gear algorithm with differential index-2
stabilization procedure [43]. On the other hand, we exploited the BDF method
implemented in Scilab [44], [45] for the integration of ordinary differential
equations generated by the recursive algorithm.

The motion of all joints in the 7-DOF manipulator were simulated but
for the sake of clarity, results of only one joint are presented. All numerical
results are associated with the the 1-st axis of the manipulator. The readers
should refer to Fig. 4 that shows the joint numbering. The differences in the
numerical results between the models implemented in ADAMS and Scilab
environment are captured using the following scalar measures:

] ADAMS Scilab

6; = |61,- —q; e l, (35)
) -ADAM S -Scilab

6; = |ql - ql' cra |v
] .. ADAMS ..Scilab

(5; — |ql - g cila |

and presented alongside the 1-st joint position, velocity and acceleration
during simulation on Figs. 6 — 11. Similar results were obtained for other
axes — values never exceeded 5; =510 rad, 5;- =5.107* rad/s and
S =0,014rad/s’ fori=1,...,7.

Differences for position and velocity are rather negligible. Larger differ-
ences (but still comparatively low) are produced for accelerations at joints.
Even though different approaches were used (ADAMS — Cartesian coordi-
nates and DAE, Scilab — joint coordinates and ODE), the results are compara-
ble. This proves the algorithm correctness of the implementation for KUKA
LWR robot.

4.4. Efficiency measurements
To compare the efficiency of various algorithms, it is necessary to have

a common measure of efficiency. There are various methods to do that. One
common measure of efficiency is the floating point operations count, i.e. the
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q.rad
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Fig. 7. Difference between ADAMS and algorithm implemented in Scilab for ¢; coordinate

number of multiplications and additions to evaluate the equations of motion
for a given system. Usually this number is expressed as a function of the
number of bodies or the number of degrees of freedom of a system. In
the literature, there are detailed reports on operation counts associated with
various recursive O(n) formulations. The numerical cost is usually evaluated
for unbranched kinematic chain in which all the joints are revolute, and all
the bodies have the same masses, inertias, and geometric parameters.

It is well known from the literature that the recursive O(n) (n — number of
bodies) formulations are among the group of the most efficient approaches for
forward dynamics of multibody systems. The computational efficiency of the
recursive algorithms is associated with elimination of constraint forces be-
tween the interacting bodies. For an open-loop kinematic chain, the equations
of motion are exclusively expressed in a minimal set of relative coordinates
through the application of joint motion subspace associated with constraint
equations imposed on the interacting bodies. This notion can be generalized
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Fig. 9. Difference between ADAMS and algorithm implemented in Scilab for ¢, coordinate

for the application in forward dynamics simulation of closed-loop systems
as indicated in various papers in the literature.

The detailed operation count is a good measure to predict the effort
involved in the computation process. However, in reality there are other
sources that can influence the computational cost associated with forward
dynamics simulation. Firstly, the practical implementation issues can affect
the performance of the algorithm. The turnaround time associated with the
fast low order algorithm can be degraded compared to other e.g. global
formulations, if the implementation is not well optimized for a given system.
Secondly, the type of computer architecture used in the calculations may
influence the performance of the algorithm. This issue is specifically impor-
tant when parallel computations are taken into account. Communication and
synchronization between different subtasks are typically some of the greatest
obstacles to getting good parallel program performance, as indicated in e.g.
[28], [30], [46], [47]. Thirdly, the process of forward dynamics algorithm
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Fig. 11. Difference between ADAMS and algorithm implemented in Scilab for §; coordinate

benchmarking is a problem itself. The performance of recursive algorithms is
easy to understand for unbranched single chains, but it is not straightforward
to predict the real numerical cost for more complicated topologies such as
closed-loops or coupled loops that one may frequently encounter in research
and engineering practice. Moreover, there is a lack of standard benchmarks
to measure the performance of multibody simulation codes as indicated in
several papers from the field [48], [49], and recent international conferences
(e.g. IMSD2014/ACMD2014 BEXCO Busan, Korea June 30 - July 3, 2014).

To assess the efficiency of the recursive algorithm presented in the pa-
per, we pursue the practical avenue. The benchmarking is performed on the
individual basis of KUKA 7DOF robot. In this paper we make a series of nu-
merical experiments to compare the real performance of the simulation codes,
i.e. our own implementation of the recursive algorithm, and ADAMS/Solver
code. The comparison is based on the wall-clock time as well as on the
number of right hand side function evaluations. The presented recursive al-
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gorithm is implemented in Scilab, which is an open source software package
being alternative to MATLAB. Scilab, just like MATLAB, is a high-level
language intended primarily for numerical computations. The source code in
Scilab is interpreted without previously compiling it into a machine language
program. Therefore, it is expected that the Scilab program execution wall-
clock time would be much larger than the elapsed real time associated with
the executable program such as ADAMS software.

Figures 12 and 13 illustrate the elapsed wall-clock time during the pro-
gram execution versus the simulation time, which is assumed to be 14 seconds
for the KUKA robot model. The data in the figures are gathered for various in-
tegration procedures used for the solution process, and for different tolerances
set in the integrators. It becomes apparent that Scilab based performance is
degraded because of the issues raised in the previous paragraph. The ADAMS
program run without updating the graphics is always more than four times
faster than the analogous simulation code implemented in Scilab. It can be
noted that this result is not appreciably sensitive to changing the integrator
tolerances. On the other hand, the obtained results show that the physical
phenomena under consideration, e.g. strong motions with relatively large
accelerations, may influence the total performance of the code. In Figures
12 and 13 one may observe the fragments of the curves which are almost
vertical. This means that the integration procedure is spending significant
amount of time to proceed the simulation further.

20 T T T T
: : : — 10/(-6) tolerance

— 107(-3) tolerance

Wall-clock time, s

0 2 4 6 8 10 12 14
Simulation time, s

Fig. 12. Wall-clock time versus simulation time for absolute and relative tolerance of the BDF

integration set to 107® and 107> (Scilab)
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—107(-6) tolerance

—10%(-3) tolerance
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Simulation time, s

Fig. 13. Wall-clock time versus simulation time for absolute and relative tolerance of the GSTIFF
SI2 integration set to 107° and 107> (ADAMS)

We also record the number of right hand side (RHS) function evaluations
that allows for generating the equations of motion for a given multi-body sys-
tem. Table 1 illustrates such data for various integrators available in ADAMS
software as well as for BDF integrator in our implementation.

Table 1.
Number of right hand side function evaluations
Integrator tolerance
Software Integrator | 107° 1073
Scilab BDF | 1924 993
ADAMS GSTIFF, SI2 | 4432 1745
GSTIFF, 13 | 2583 1613
WSTIFF, SI2 | 4852 1824
WSTIFF, I3 | 3388 1489
HHT | 7431 2190
Newmark | 7495 2196
HASTIFF, SI1 | 7010 1821
HASTIFF, SI2 | 6272 1787

The results observed in Table 1 stay in contrast to the performance mea-
sured by elapsed real time presented in Figures 12, 13. Independently of
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the tolerances set in the integrator, the number of RHS function evaluations
for the recursive algorithm is always smaller than the similar measures for
ADAMS software. On the basis of this result, one may carefully suspect that
the implementation of the recursive algorithm for the given robot in the form
of executable program can be faster than the ADAMS program for the same
model and simulation conditions. However, this outcome should be interpret-
ed wisely, as both solvers exploit various formulations for evaluation of the
equations of motion. The recursive algorithm is a topological formulation that
finally leads to the set of ordinary differential equations. On the other hand,
ADAMS software exploits the global formulation with redundant coordinates
for the system state description. This implies the necessity of the solution
of differential-algebraic equations. From the above analysis it appears the
performance evaluation is a difficult problem, especially when the objective
and quantitative measures are taken into account.

5. Discussion

The recursive method presented in the paper is not new and it is well
known in the community. The mature form of the formulation was proposed
by Featherstone in 1983 [8] and it is called the articulated body algorithm.
The procedure was extended many times and generalized by the team from
the Jet Propulsion Laboratory (Jain, Rodriguez, Kreutz-Delgado) among the
others. It should be emphasized that the authors focused more on the ap-
plication of the recursive method for the forward dynamics of LWR KUKA
7DOF robot. The intention in the background is related to the investigation
of manipulator dynamic properties. This information is particularly useful
for control and simulation purposes due the fact that KUKA LWR possesses
almost open control architecture in the form of Fast Research Interface [50].

Detailed treatment of the recursive algorithm is given and recalled in the
paper. The spatial operator algebra is employed to express the dynamics of
the KUKA LWR manipulator. The minor thing associated with our imple-
mentation is the evaluation of the equations of motion. The equations are
generated in coordinate frames associated with the center of mass of bod-
ies. Originally, articulated body-like algorithms are expressed in coordinate
frames other than used in the paper. The appendix involves the estimated
parameters of the LWR KUKA simulation model. Intermediate rotations
matrices as well as detailed geometric parameters are given. What is more
important, the gathered numerical results are presented in the paper. This
outcome can be useful for other authors working in the field of robotics and
multibody dynamics e.g. for control or benchmarking purposes and can be
easily reproduced if it is needed.
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The efficiency of the recursive formulation is investigated in the form
of separate subsection provided in the paper. First of all, it is noted by the
authors that the performance evaluation of multibody dynamics algorithms
is a difficult issue. Secondly, we carry out a series of numerical experiments
to estimate the efficiency of the recursive algorithm in comparison with
ADAMS software. The practical measures of the performance are taken into
account such as the wall clock time measurements or the number of right
hand side function evaluations. The obtained numerical results for the KUKA
LWR robot are of practical matter and can be used as a baseline for future
comparisons in the group of industrial-like applications.

The implicit values of the paper are coming from the current endeavors of
the authors. The partial numerical results presented in the paper are useful for
further developments, especially in robot parameter identification procedures.
Some of the advances in the field have been approached in the recent papers
[40], [41]. Nevertheless, this is still an ongoing and active area of research.
Having the complete set of reliable parameters, one can apply recursive
algorithm exploited in the paper to perform real-time simulation, which is
usually very desirable in various model based controllers.

6. Conclusions

This paper describes the algorithmic approach for the efficient dynamics
simulation of serial and tree-like systems with rigid bodies such as robotic
arms. Equations of motion are derived by using spatial operator algebra and
then algorithmic steps are formulated. Equations of motion are expressed
in a compact matrix form that is specifically important for various applica-
tions, e.g. identification, dynamic analysis and synthesis of various types of
controllers.

The joint space recursive formulation has been successfully applied for
the analysis of the 7DOF KUKA LWR robot. Results from the number of
test cases and the comparisons against the outcome obtained by using the
commercial multibody software show the verification of the algorithm. More-
over, some efficiency results are provided and comparatively set against the
outcome from the commercial multibody solver.

The parameter identification and simulation based verification of the
KUKA LWR manipulator are areas of forthcoming research for the authors.
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Appendix

Term X is a skew-symmetric matrix associated with the vector x.
Shift and joint space matrices:

B, = |1 7T
T 0 I 6><6’

- ]
1 6x1

Their time derivatives:

B, = |0 —@ri—hisiq) |
K 0
o = | —@hips;i- hy (@i + hyjs;id)
/ a~)l-hl-j
O 0 o0 ... 0]
B, 0 0 0
B = 0 B23 0 - 0 ,
| 0 ... B(n—l)n 0 J6nscon
(H, 0 ... 0
0 H, ... 0
H=|. 7 .
0 0 n denxn
® = I-B)!'=
[ I 0 0 0
B, I 0 0
= BxBi, By 1 0
| B(n—l)n---BIZ B(n—l)n I leuxcon

(36)

(37)

(38)

(39)

(40)

(41)

(42)



DYNAMIC MODELING AND ANALYSIS OF A LIGHTWEIGHT ROBOTIC MANIPULATOR. .. 297

0O 0 0 .. 0]
B, 0 0 ... 0
B = 0 By O 0 , 43)
0 ... By O
(H, 0 ... 0
. 0 H, ... 0
H = . _ _ . (44)
0 0 " lenxn
[ m 1
M, = |0 l : (45)
| 0, 66
Ji = AJATL (46)
Q = 0 f) ] , 47)
| 0 ~0,]; 66
w; = (,(),'+h,'j6]j (48)
Fg; = mfg} , (49)
. 0 6x1
P‘
Fo, = / (50)
Nj 6x1

Term J;. denotes inertia matrix for body j with respect to its centroidal
frame n}, g is gravity acceleration, P; and N; are force and torque acting on
the center of mass of j-th link, respectively.

Parameters of the LWR 4+ simulation model

Mass and inertia parameters of the model are presented in Table (2).
Moments of inertia are expressed in the centroidal frames n’. Links are
numbered from the base (0) to the end effector (7).

Kinematic parameters (lengths in m, angles in rad):

e joint 1: Cp=1
Cor = Rx(_g)Rz(_g), Ag, = Re(q1),
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Parameters of the LWR 4+ simulation model
Moments of inertia, kgm>
link | mass, kg Jrx Jyy Jz
1 3] 1,27-1072]1,27-107%| 5,4-107°
2 3] 1,27-1072]1,27-107%| 5,4-107°
3 3] 1,27-1072]1,27-107%| 5,4-1073
4 2,5/1,017-107| 4,5-1073| 4,5-107°
5 2,5(1,017-107%| 4,5-107%| 4,5-107°
6 1| 1,44-1073|1,44-1073[1,44-1073
7 0,5| 3,66-107*(3,66-107*|2,25-107*
so, = [0 0 0], s, =10 0 0,177,
sjp =10 0 —0,2105]", si;=[0 0 —0,0975]",
joint 2: e joint 5:
il il Cys=1
Ci =R(Z5)Ry (%), 5 =10
2 2 Csy=1
T T 4
Cy = RZ(E)Ry(—E), AJs = R.(g5), .
Al = Ry(q), Sjs = [0 0 0,0975] .
s;, =[0 0 0,177, S5, = [0 0 =0,0975],
sy, =[0 0 -0,177,
.. e joint 6:
joint 3: m V4
Cy=1, Cse = RZ(E)Ry(—E),
— T T
Cn=1 Ces = RUGIR,(-5),
A23 = R.(g3), A” =R
S =00 0 011, s6 = Relge).
so=10 0 —01] st =[0 0 0,09757,
32 T sis =[0 0 0],
joint 4: e joint 7:
_ T T C _ I
Csyy = RZ(E)Ry(_E)’ 61 =1,
Cp =1,

T /4
Cjt/s = RZ(E)Ry(_E),
A34 = R.(q4),

A/6I7 = Rz(‘]6)’
si;; =[0 0 0],

s =10 0 —0,0309]".

All vectors defining axes of rotation are: h:} =[00 177.

Table 2.
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Analiza dynamiki manipulatora w przestrzeni wspoétrzednych ztaczowych

Streszczenie

W artykule przedstawiono efektywny algorytm do analizy dynamiki manipulatora przestrzen-
nego o otwartym laicuchu kinematycznym. Réwnania opisujace dynamike ukfadu zapisano w formie
algebraiczno-macierzowej w przestrzeni wspéirzednych ztgczowych. Wprowadzona zwarta reprezen-
tacja réwnan opisujacych ruch manipulatora pozwolita na rozwigzanie zadania prostego i odwrot-
nego dynamiki manipulatora w rekursywny i wydajny sposéb. Algorytm uogélniono na przypadki
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analizy dynamiki otwartych tancuchéw kinematycznych z dowolng liczbg stopni swobody. Opra-
cowane sformutowanie zastosowano do analizy dynamiki manipulatora KUKA LWR o siedmiu
stopniach swobody. Zweryfikowano poprawno$¢ obliczeni numerycznych dla testowych przypadkéw
ruchu manipulatora, a wyniki poréwnano z rezultatami otrzymanymi w pakiecie komercyjnym do
obliczert dynamiki ukfadéw wielocztonowych.



