PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Ergonomic Design Changes in Hand Tools on Physiological Cost and Subjective Ratings

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Users of hand tools expect that tools after ergonomic changes in design will require less muscular activity and cause fewer musculoskeletal disorders than conventional tools. Reports on evaluation of ergonomic design changes in hand tools are controversial. In this study, we measured the effect of changes in tool design with physiological cost of performance and subjective ratings in a simulated setting. We determined physiological cost of performance by measuring muscle activity of the right and left forearm (flexor carpi ulnaris) with electromyography. We collected a questionnaire with subjective ratings before and after each experimental task. Before the tests, ergonomically reconfigured hacksaws received better rating scores than original hacksaws. However, we found no differences in subjective ratings of the hacksaws after the tests. In addition, electromyographic activity did not show any significant differences between the original and modified tools.
Rocznik
Strony
267--277
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Engineering, East Carolina University, Greenville, NC, USA
Bibliografia
  • 1.Aghazadeh F, Mital A. Injuries due to hand tools. Results of a questionnaire. Appl Ergon. 1987;18(4):273–8.
  • 2.Chao A, Kumar AJ, Emery CTND, Nagarajarao K, You H. An ergonomic evaluation of cleco pliers. In: Proceedings of the IEA 2000/HFES 2000 Congress, San Diego, California, USA. Santa Monica, CA, USA: Human Factors and Ergonomic Society; 2000. p. 4-441–2.
  • 3.Emanual J, Mills S, Bennett J. In search of a better handle. In: Poydar HR, editor. Proceedings of the Symposium: Human Factors and Industrial Design in Consumer Products. Medford, MA, USA: Tuffs University; 1980. p. 34–40.
  • 4.Schoenmarklin RW, Marras WS. Effects of handle angle and work orientation on hammering: I. Wrist motion and hammering performance. Hum Factors. 1989;31(4):397–411.
  • 5.Tichauer ER. Some aspects of stress on forearm and hand in industry. J Occup Med. 1966;8(2):63–71.
  • 6.Johnson S. Evaluation of powered screwdriver design characteristics. Hum Factors. 1988;30(1):61–9.
  • 7.Kilbom A, Makarainen M, Sperling L, Kadefors R, Liedberg L. The significance of tool design and individual factors for efficiency and fatigue in work with plate shears. Stockholm, Sweden: Swedish Institute of Occupational Health; 1991.
  • 8.Chaffin DB, Anderson GBJ. Occupational biomechanics. New York, NY, USA: Wiley-Interscience; 1984.
  • 9.Greenberg L, Chaffin DB. Workers and their tools: a guide to the ergonomic design of handtools and small presses. Midland, MI, USA: Pendell; 1978.
  • 10.Meagher SW. Tool design for prevention of hand and wrist injuries. J Hand Surg Am. 1987;12(5 Pt 2):855–7.
  • 11.Putz-Anderson V, editor. Cumulative trauma disorders. A manual for musculoskeletal diseases of the upper limb. London, UK: Taylor & Francis; 1988.
  • 12.Schoenmarklin RW, Marras WS, Leurgans SE. Industrial wrist motions and incidence of hand/wrist cumulative trauma disorders. Ergonomics. 1994;37(9):1449–59.
  • 13.Haapalainen MJ, Kivisto-Rahnasto J, Mattila M. Ergonomic design of nonpowered hand tools: an application of quality function deployment. Occup Ergon. 1999/2000;2(3):179–89.
  • 14.Marsot J, Claudon L. Design and ergonomics. Methods for integrating ergonomics at hand tool design stage. International Journal of Occupational Safety and Ergonomics (JOSE). 2004;10(1):13–23. Retrieved May 8, 2012, from: http://www.ciop.pl/8662.
  • 15.Strasser H, Wang B, Hoffmann A. Electromyographic and subjective evaluation of hand tools: the example of masons trowels. Int J Ind Ergon. 1996;18(1):91–106.
  • 16.Spielholz P, Bao S, Howard N. A practical method for ergonomic and usability evaluation of hand tools: a comparison of three random orbital sander configurations. Appl Occup Environ Hyg. 2001;16(11):1043–8.
  • 17.Li KW. Ergonomic design and evaluation of wire-tying hand tools. Int J Ind Ergon. 2002;30(3):149–61.
  • 18.Ozalp T, Babalik FC. Ergonomic evaluation of screwdriver handles under different working conditions. Occup Ergon. 2005;5:187–203.
  • 19.Strasser H. Different grips of screwdrivers evaluated by means of measuring maximum torque, subjective rating and by registering electromyographic data during static and dynamic test work. In: Karwowski W, Yates JW, editors. Advances in industrial ergonomics and safety III. New York, NY, USA: Taylor & Francis; 1991. p. 413–20.
  • 20.Toussaint HM, van Baar CE, van Langen PP, de Looze MP, van Dieen JH. Coordination of the leg muscles in backlift and leglift. J Biomech. 1992;25:1279–89.
  • 21.Mirka GA, Marras WS. Toward a more accurate description of the EMG/force relationship of the erector spinae muscles. In: Proceedings of the Human Factors Society 35th Annual Meeting. Santa Monica, CA, USA: Human Factors Society; 1991. p. 728–32.
  • 22.Rohmert W. Problems of determination of rest allowances Part 2: determining rest allowances in different human tasks. Appl Ergon. 1973;4(3):158–62.
  • 23.Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16(3):297–334.
  • 24.Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Mahwah, NJ, USA: Erlbaum; 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9fa51e0-304e-4588-a6e4-c334982e1f77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.