PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and density-functional-theory calculations of electronic band structure of hollow sphere WS2

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel and low-cost synthesis of tungsten disulfide (WS2 ) transition metal dichalcogenide was carried out via gas-solid reaction in a horizontal quartz reactor. In this process, the prepared hollow WO3 precursor was sulfided with CS2 at 550 °C at different durations under N2 gas atmosphere. The as-prepared WS2 samples were formed by substitution of O by S during the sulfidation process. The characterization of these samples was performed employing X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) specific surface area, X-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectroscopy. The characterization results showed that the as-prepared WS2 samples were of high quality and purity. No significant differences were observed in various WS2 samples synthesized during different sulfidation periods. The calculated results obtained from the density functional theory (DFT) indicate that WS2 has an indirect band gap of ca. 1.56 eV, which is in agreement with experimental band gap of ca. 1.50 eV. Combining the experimental and DFT results suggests that the novel method used in the synthesis of WS2 has a potential application for large scale production. The obtained WS2are of high quality and can be implemented in photocatalysis, catalysis, photovoltaics, optoelectronic devices and photosensor devices.
Słowa kluczowe
Wydawca
Rocznik
Strony
409--418
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Mechanical Engineering Department, Ho Technical University, P.O. Box HP 217, Ho, Volta Region, Ghana
  • Mechanical Engineering Department, Ho Technical University, P.O. Box HP 217, Ho, Volta Region, Ghana
Bibliografia
  • [1] CHEN S.Y., ZHENG C., FUHRER M.S., YAN J., Nano. Lett., 15 (2015), 2526.
  • [2] WANG Y., CONG C., YANG W., SHANG J., PEIMYOO N., CHEN Y., KANG J., WANG J., HUANG W., YU T., Nano Res., (2015), 1.
  • [3] WANG Q.H., KALANTAR-ZADEH K., KIS A., COLEMAN J.N., STRANO M.S.,Nat.Nanotechnol.,7(2012), 699.
  • [4] ZHAN Y., LIU Z., NAJMAEI S., AJAYAN P.M., LOU J., Small, 8 (2012), 966.
  • [5] ZENG H., DAI J., YAO W., XIAO D., CUI X.,Nat.Nanotechnol., 7 (2012), 490.
  • [6] GHOREISHI S., MESHKAT S., DADKHAH A., Mater. Res. Bull., 45 (2010), 584.
  • [7] CHOU S.S., HUANG Y.K., KIM J., KAEHR B., FOLEY B.M., LU P., DYKSTRA C., HOPKINS P.E., BRINKER C.J, HUANG J., J. Am. Chem. Soc., 137 (2015), 1742.
  • [8] LUKOWSKI M.A., DANIEL A.S., ENGLISH C.R., MENG F., FORTICAUX A., HAMERS R. J., JIN S., Energ. Environ. Sci., 7 (2014), 2608.
  • [9] PARK J., LEE W., CHOI T., HWANG S. H., MYOUNG J.M, JUNG J. H, KIM S. H, KIM H., Nanoscale, 7 (2015), 1308.
  • [10] ELÍAS A. L., PEREA-LÓPEZ N., CASTROBELTRÁN A., BERKDEMIR A., LV R., FENG S., LONG A. D., HAYASHI T., KIM Y. A., ENDO M.,ACS Nano, 7 (2013), 5235.
  • [11] NOTLEY S.M., J. Colloid Interf. Sci., 396 (2013), 160.
  • [12] CHEN D., TANG K., SHEN G., SHENG J., FANG Z., LIU X., ZHENG H., QIAN Y., Mater. Chem. Phys., 82 (2003), 206.
  • [13] ELLMER K., Phys. Status Solidi B, 245 (2008), 1745.
  • [14] HOU X., SHAN C., CHOY K.L., Surf. Coat. Technol., 202 (2008), 2287.
  • [15] MARGOLIN A., DEEPAK F., POPOVITZ-BIRO R., BAR-SADAN M., FELDMAN Y., TENNE R., Nanotechnology, 19 (2008), 095601.
  • [16] WU J., FU X., Mater. Lett., 61 (2007), 4332.
  • [17] WIESEL I., ARBEL H., ALBU-YARON A., POPOVITZBIRO R., GORDON J.M., FEUERMANN D., TENNE R., Nano Res., 2 (2009), 416.
  • [18] WEN Y., ZHANG H., ZHANG S., Nanoscale, 6 (2014), 13090.
  • [19] CHOI S.H., BOO S.J., LEE J. H., KANG Y.C., Sci. Rep.-UK, 4 (5755) (2014), 4.
  • [20] JAMES D., ZUBKOV T., J. Photoch. Photobio. A, 262 (2013), 45.
  • [21] CAO S., LIU T., HUSSAIN S., ZENG W., PAN F., PENG X., J. Mater. Sci.-Mater. El., 26 (2015), 809.
  • [22] THANGARAJA A., SHINDE S.M., KALITA G., TANEMURA M., Mater. Lett., 156 (2015), 156.
  • [23] YANG J., VOIRY D., AHN S.J., KANG D., KIM A.Y., CHHOWALLA M., SHIN H.S., Angew. Chem. Int. Edit., 52 (2013), 13751.
  • [24] CHHOWALLA M., SHIN H.S., EDA G., LI L.J., LOH K.P., ZHANG H., Nat. Chem., 5 (2013), 263.
  • [25] MORRISH R., HAAK T., WOLDEN C.A.,Chem.Mater., 26 (2014), 3986.
  • [26] TEHRANI M., LUHRS C., AL-HAIK M., TREVINO J., ZEA H., Nanotechnology, 22 (2011), 285714.
  • [27] CAO S., LIU T., HUSSAIN S., ZENG W., PENG X., PAN F., Mater. Lett., 129 (2014), 205.
  • [28] SUN S., ZOU Z., MIN G., Mater. Chem. Phys., 114 (2009), 884.
  • [29] ZHAO X., CHEUNG T.L., ZHANG X., NG D.H., YU J., J. Am. Ceram. Soc., 89 (2006), 2960.
  • [30] YU J., QI L., CHENG B., ZHAO X., J. Hazard. Mater., 160 (2008), 621.
  • [31] SING K.S., Pure Appl. Chem., 57 (1985), 603.
  • [32] SEGALL M., LINDAN P.J., PROBERT M.A., PICKARD C., HASNIP P., CLARK S., PAYNE M., J. Phys. Condens. Mat., 14 (2002), 2717.
  • [33] PERDEW J. P., BURKE K., ERNZERHOF M.,Phys.Rev. Lett., 77 (1996), 3865.
  • [34] PERDEW J. P., WANG Y., Phys. Rev. B, 45 (1992), 13244.
  • [35] HOU Y., LAURSEN A.B., ZHANG J., ZHANG G., ZHU Y., WANG X., DAHL S., CHORKENDORFF I., Angew. Chem., Int. Edit., 52 (2013), 3621.
  • [36] YANG L., ZHOU H., FAN T., ZHANG D., PCCP, 16 (2014), 6810.
  • [37] WU Z., WANG D., ZAN X., SUN A., Mater. Lett., 64 (2010), 856.
  • [38] ZONG X., HAN J. , MA G., YAN H., WU G., LI C., J. Phys. Chem. C, 115 (2011), 12202.
  • [39] JIN J., YU J., GUO D., CUI C., HO W., Small, 11 (2015), 5262.
  • [40] RODRIGUEZ GUTIERREZ H., PEREA-LÓPEZ N., ELÍAS A. L., BERKDEMIR A., WANG B., LV R., LÓPEZ-URÍAS F., CRESPI V., TERRONES H., TERRONES M., J. APS, March Meeting Abstracts, (2013), 5007.
  • [41] WILSON J., YOFFE A., Adv. Phys., 18 (1969), 193.
  • [42] KUC A., ZIBOUCHE N., HEINE T., Phys. Rev. B, 83 (2011), 245213.
  • [43] SAYAN R., PETER B., Sol. Energ. Mat. Sol. C., 174 (2018), 370.
  • [44] FORTI S., ROSSI A., BÜCH H., CAVALLUCCI T., BISIO F., SALA A., MENTES¸ T. O., LOCATELLI A., MAGNOZZI M., CANEPA M., MÜLLER K., LINK S., STARKE U., TOZZINIB V., COLETT C., Nanoscale, 9 (2017), 16412.
  • [45] KUMAR A., AHLUWALIA P., Eur. Phys. J. B, 85 (2012), 1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9f20a42-b6a3-4d6b-8591-f0c6361563ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.