PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Available CTD profiles from the Gulf of Riga (May–August, 1993–2012) were analyzed to study inter-annual and long-term changes in temperature, salinity and density in relation to river runoff and atmospheric forcing (e.g. Baltic Sea Index). To describe temporal changes in vertical stratification, the upper mixed layer (UML) and deep layer (DL) parameters were estimated. On average the UML depth increases from 8.7 m in May to 9.0, 11.5 and 13.7 m in June, July and August, respectively, and the UML temperature increases from 8.0°C to 12.5, 18.7 and 18.6°C (May, June, July and August) while the UML salinity increases from 4.90 g kg−1 to 5.14, 5.28 and 5.38 g kg−1, respectively. High correlation (r = −0.82) was found between the inter-annual changes in river runoff (spring) and mean salinity in the UML in August as well as between DL mean salinity (r = 0.88) and density (r = 0.84) in the Irbe Strait and DL mean salinity and density in the Gulf of Riga. Inter-annual changes in the UML depth as well as in DL salinity and density had a significant correlation with the changes in Baltic Sea Index. The strongest stratification (August) can be observed in the years with the highest UML temperature and the highest river run-off in spring. We suggest that the predicted increase in water temperature and changes in river run-off due to the climate change would result in faster development of the seasonal thermocline in spring and stronger vertical stratification in summer.
Czasopismo
Rocznik
Strony
37--48
Opis fizyczny
Bibliogr. 30 poz., mapy, tab., wykr.
Twórcy
autor
  • Marine Systems Institute, Tallinn University of Technology, Tallinn, Estonia
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
autor
  • Marine Systems Institute, Tallinn University of Technology, Tallinn, Estonia
Bibliografia
  • [1] Alenius, P., Nekrasov, A., Myrberg, K., 2003. Variability of the baroclinic Rossby radius in the Gulf of Finland. Cont. Shelf Res. 23 (6), 563—573.
  • [2] BACC, 2008. Assessment of Climate Change for the Baltic Sea Basin. Springer Verlag, Berlin, 35—221.
  • [3] BACC, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Springer Open, Geesthacht, 69—263.
  • [4] Berzinsh, V., 1980. Interannual and seasonal changes of water salinity in the Gulf of Riga. Rybokhozyaistvennye issledovaniya (Balt-NIIRKH), vol. 15, Avots, Riga, 3—12, (in Russian).
  • [5] Berzinsh, V., 1987. Hydrological dividing of the open part of the Gulf of Riga. In: Andrusaitis, G. P., Laganovska, R. Y., Apine, S. O. (Eds.), Hydrochemical and Hydrobiological Characteristics and Dividing of the Coastal Part of the Baltic Sea, Gulf of Riga and Gulf of Finland, Zinatne, Riga, 7—20, (in Russian).
  • [6] Berzinsh, V., 1995. Hydrology. In: Ojaveer, O. (Ed.), Ecosystem of the Gulf of Riga Between 1920 and 1990. Estonian Acad. Publ., Tallinn, 7—32.
  • [7] Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., Naggar, K. E., Siwertz, N., 1998. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28 (3), 433—460.
  • [8] Feistel, R., Weinreben, S., Wolf, H., Seitz, S., Spitzer, P., Adel, B., Nausch, G., Schneider, B., Wright, D. G., 2010. Density and absolute salinity of the Baltic Sea 2006—2009. Ocean Sci. 6 (1), 3—24.
  • [9] Fennel, W., Seifert, T., Kayser, B., 1991. Rossby radii and phase speeds in the Baltic Sea. Cont. Shelf Res. 11 (1), 23—36.
  • [10] Hansson, M., Axe, P., Andersson, L., 2009. Extent of anoxia and hypoxia in the Baltic Sea, 1960—2009. SMHI Report Mo 2009-214, http://www.smhi.se/polopoly_fs/1.10354!Oxygen_timeseries_1960_2009.pdf.
  • [11] Jurgensone, I., Carstensen, J., Ikauniece, A., Kalveka, B., 2011. Long-term changes and controlling factors of phytoplankton community in the Gulf of Riga (Baltic Sea). Estuaries Coasts 34 (6), 1205—1219.
  • [12] Kotta, J., Kotta, I., Simm, M., Põllupüü, M., 2009. Separate and interactive effects of eutrophication and climate variables on the ecosystem elements of the Gulf of Riga. Estuar. Coast. Shelf Sci. 84 (4), 509—518.
  • [13] Kõuts, T., Håkansson, B. (Eds.), 1995. Observations of Water Exchange, Currents, Sea Levels and Nutrients in the Gulf of Riga. SMHI RO Series No. 23, Norrköping. 141 pp.
  • [14] Kronsell, J., Andersson, P., 2014. Total and regional runoff to the Baltic Sea. HELCOM Baltic Sea Environment Fact Sheets, http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/ (accessed: 11 November 2015).
  • [15] Lehmann, A., Krauss, W., Hinrichsen, H.-H., 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54 (3), 299—316.
  • [16] Lehmann, A., Myrberg, K., 2008. Upwelling in the Baltic Sea — a review. J. Marine Syst. 74 (Suppl.), S3—S12.
  • [17] Lehmann, A., Myrberg, K., Höflich, K., 2012. A statistical approach to coastal upwelling in the Baltic Sea based on the analyses of satellite data for 1990—2009. Oceanologia 54 (3), 369—393, http://dx.doi.org/10.5697/oc.54-3.369.
  • [18] Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Praxis Publ. Ltd., Chichester, 46 pp.
  • [19] Liblik, T., Lips, U., 2011. Characteristics and variability of the vertical thermohaline structure in the Gulf of Finland in summer. Boreal Environ. Res. 16 (Suppl. A), 73—83.
  • [20] Lilover, M. J., Lips, U., Laanearu, J., Liljebladh, B., 1998. Flow regime in the Irbe strait. Aquat. Sci. 60 (3), 253—265.
  • [21] Lips, I., Lips, U., Liblik, T., 2009. Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea). Cont. Shelf Res. 29 (15), 1836—1847.
  • [22] Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016a. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents. Cont. Shelf Res. 112, 1—13.
  • [23] Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016b. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part II: Mesoscale features and freshwater transport pathways. Cont. Shelf Res. 115 (1), 44—52.
  • [24] Petrov, V. S., 1979. Water balance and water exchange between the Gulf of Riga and the Baltic Proper. In: Sbornik rabot rizhskoj gidrometeorologicheskoj observatorii, 18, Riga. 20—40, (in Russian).
  • [25] Raudsepp, U., 2001. Interannual and seasonal temperature and salinity variations in the Gulf of Riga and corresponding saline water inflow from the Baltic Proper. Hydrol. Res. 32 (2), 135—160.
  • [26] Schlitzer, R., 2010. Ocean Data View, http://odv.awi.de.
  • [27] Siegel, H., Gerth, M., Tschersich, G., 2006. Sea surface temperature development of the Baltic Sea in the period 1990—2004. Oceanologia 48 (S), 119—131.
  • [28] Stiebrins, O., Väling, P., 1996. Bottom Sediments of the Gulf of Riga. Geological Survey of Latvia, Riga, 4 pp.
  • [29] Stipa, T., Tamminen, T., Seppälä, J., 1999. On the creation and maintenance of stratification in the Gulf of Riga. J. Marine Syst. 23 (1—3), 27—49.
  • [30] Tamminen, T., Seppälä, J., 1999. Nutrient pools, transformations, ratios, and limitation in the Gulf of Riga, the Baltic Sea, during four successional stages. J. Marine Syst. 23 (1—3), 83—106.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9f1b240-2d11-4982-ad44-3e0659d4c444
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.