PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical model of capacitance-related phenomena in semiconductor lasers based on partial differential equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a model of the capacitance and electrical properties of semiconductor lasers biased with modulated voltage. The model is based on the finite-element method (FEM), which is widely used in computer modelling and is a natural generalisation of a wellknown constant-voltage FEM electrical model. In principle, the model can be applied to any kind of device where inductance can be neglected. Here, it is applied to simulate the complex impedance and other high-frequency electrical properties of a vertical-cavity surface-emitting laser. These properties are very important for the application of such lasers in optical data transfer systems. The results show that both the diameter of the top mesa and the surface area of the top electrical contact have a strong impact on the performance of the laser. This impact is analysed as a function of the modulation frequency.
Rocznik
Strony
art. no. e150606
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
  • Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005 Lodz, Poland
  • Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005 Lodz, Poland
Bibliografia
  • [1] Haghighi, N., Moser, P. & Lott, J. A. 40 Gbps with electrically parallel triple and septuple 980 nm VCSEL arrays. J. Light. Technol. 38, 3387-3394 (2020). https://doi.org/10.1109/JLT.2019.2961931.
  • [2] Chorchos, L. et al. Energy efficient 850 nm VCSEL based optical transmitter and receiver link capable of 80 Gbit/s NRZ multi-mode fiber data transmission. J. Light. Technol. 38, 1747-1752 (2020). https://doi.org/10.1109/JLT.2020.2970299.
  • [3] Wasiak, M. et al. Numerical model for small-signal modulation response in vertical-cavity surface-emitting lasers. J. Phys. D 53, 345101 (2020). https://doi.org/10.1088/1361-6463/ab8b94.
  • [4] Grabowski, A., Gustavsson, J., He, Z. S. & Larsson, A. Largesignal equivalent circuit for datacom VCSELs. J. Light. Technol. 39, 3225-3236 (2021). https://doi.org/10.1109/JLT.2021.3064465.
  • [5] Chang, Y. & Coldren, L. A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 15, 704-715 (2009). https://doi.org/10.1109/JSTQE.2008.2010955.
  • [6] Grabowski, A., Gustavsson, J., He, Z. S. & Larsson, A. Large-signal circuit model for datacom VCSELs. In 2018 IEEE International Semiconductor Laser Conference (ISLC), 1-2 (IEEE, 2018).
  • [7] Syrbu, A. et al. 10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands. In OFC/NFOEC 2008, 1-3 (IEEE, 2008). https://doi.org/10.1109/OFC.2008.4528529.
  • [8] Wasiak, M. et al. Numerical model of capacitance in verticalcavity surface-emitting lasers. J. Phys. D 49, 175104 (2016). https://doi.org/10.1088/0022-3727/49/17/175104.
  • [9] Griffiths, D. J. VCSEL fundamentals. In Introduction to electrodynamics, 90-96 (Prentice-Hall, 1999).
  • [10] Wheeler, H. A. Formulas for the skin effect. Proc. IRE 30, 412-424 (1942). https://doi.org/10.1109/JRPROC.1942.232015.
  • [11] Wasiak, M. et al. Modelling of the modulation properties of arsenide and nitride VCSELs. Proc. SPIE 10122, 101220A (2017). https://doi.org/10.1117/12.2253646.
  • [12] Jun, Y. C. et al. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 20, 1903-1911 (2012). https://doi.org/10.1364/OE.20.001903.
  • [13] Wasiak, M., Sarzała, R. P. & Śpiewak, P. Influence of resonator length on performance of nitride TJ VCSEL. IEEE J. Quantum Electron. 55, 1-9 (2019). https://doi.org/10.1109/JQE.2019.2946386.
  • [14] Michalzik, R. VCSEL fundamentals. In VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, 19-75 (Springer Berlin Heidelberg, 2013).
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. This work was partially supported by the Polish National Science Centre, grant no. 2016/21/B/ST7/03532 and by the Polish Ministry of Science and Higher Education, grant I-3/501/17-3-1-69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9efdb20-d116-4dce-9541-223043137071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.