Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As the size and weight of crucial equipment in third-generation nuclear power plants increase, the demand for high-temperature plasticity in welds has become more critical. This study examines the effect of varying δ-ferrite content on the high-temperature tensile properties of 308L austenitic stainless steel deposited metal at 350°C. The results reveal that as the δ-ferrite content decreased from 11.6 to 7.4%, the ferrite morphology shifted from continuous lathy and network structures to a discontinuous skeletal form. Correspondingly, 350°C high-temperature elongation increased from 26 to 32%, while tensile strength remained stable across all specimens, exhibiting good strength and plasticity at room temperature. The discontinuous skeletal δ-ferrite (7.4%) suppresses interfacial crack propagation during high-temperature tensile testing, thereby improving the high-temperature ductility.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
52--62
Opis fizyczny
Bibliogr. 31 poz, rys., tab.
Twórcy
autor
- CISRI Welding Institute, Central Iron and Steel Research Institute, Beijing 10081, China
autor
- CISRI Welding Institute, Central Iron and Steel Research Institute, Beijing 10081, China
autor
- CISRI Welding Institute, Central Iron and Steel Research Institute, Beijing 10081, China
autor
- CISRI Welding Institute, Central Iron and Steel Research Institute, Beijing 10081, China
autor
- CISRI Welding Institute, Central Iron and Steel Research Institute, Beijing 10081, China
Bibliografia
- [1] de Bellefon, G.M., van Duysen, J.C., Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400°C, J. Nucl. Mater., 2016, 475: 168–191. doi:10.1016/j.jnucmat.2016.04.015
- [2] Yang, J.W., Li, S.Y., Zhang, M.L., Wang, L.L., Zhang, W.Y., Jiang, H. (eds.), Welding process and welding consumable of generation III nuclear island main equipment. Proceedings of The 20th Pacific Basin Nuclear Conference, Springer Singapore, Singapore, 2017
- [3] Tukur, H., Yong, L., A review on the behavior of 308L cladding material and their corrosion in nuclear power plants, Int. J. Electrochem. Sci., 2020, 15(1): 1005–1021. doi: 10.20964/2020.01.67
- [4] Okonkwo, B.O., Ming, H., Wang, J., Meng, F., Xu, X., Han, E.H., Microstructural characterization of low alloy steel A508 – 309/308L stainless steel dissimilar weld metals, Int. J. Press. Vessel. Pip., 2021, 190: 104297. doi: 10.1016/j.ijpvp.2020.104297
- [5] Fan, Y., Wang, F., Lu, Y., Liu, T., Shoji, T., Effect of inhomogeneous microstructure on the stress corrosion cracking behavior of 316LN stainless steel weld joint under high-temperature and high-pressure water small punch test, Corros. Sci., 2024, 229: 111895. doi: 10.1016/j.corsci.2024.111895
- [6] Cui, T., Xu, X., Pan, D., Lu, Z., Ma, J., Yang, S., et al., Correlating oxidation resistance to stress corrosion cracking of 309L and 308L stainless steel claddings in simulated PWR primary water, J. Nucl. Mater., 2022, 561: 153509. doi: 10.1016/j.jnucmat.2022.153509
- [7] Yang, C., Zhang, Q., Lu, C., Huang, S., Zhang, T., Zhang, Z., Numerical simulation of typical abnormal operating conditions in the secondary circuit system of a Hua-long Pressurized Reactor nuclear power unit, Ann. Nucl. Energy, 2024, 201: 110406. doi: 10.1016/j.anucene.2024.110406
- [8] Zheng, M., Yan, J., Shentu, J., Tian, L., Wang, X., Qiu, Z., The general design and technology innovations of CAP1400, Engineering, 2016, 2(1): 97–102, 105–110. doi: 10.1016/J.ENG.2016.01.018
- [9] Rehouma, K.M., Shabadi, R., Taillard, R., Bouabdallah, M., Imad, A., Effect of aging at 700°C on ferrite transformation in a 316L/308L weldment, Mater. Manuf. Process., 2012, 27(12): 1370–1375. doi:10.1080/10426914.2012.663134
- [10] Zhao, L., Wei, S., Wu, D., Gao, D., Lu, S., δ-ferrite transformation mechanism and its effect on mechanical properties of 316H weld metal, J. Mater. Sci. Technol., 2020, 57: 33–42. doi: 10.1016/j.jmst.2020.02.085
- [11] Raj, C.R., Kumar, S., Chandra, K., Roychowdhury, S., Singh, P.K., Thermal aging effects on Tensile and Metallurgical characteristics of Stainless steel weld joint, Procedia Struct. Integr., 2024, 60: 709–722. doi:10.1016/j.prostr.2024.05.088
- [12] Lai, H.H., Hsieh, H., Kuo, C.Y., Wu, W., Solidification cracking nature and sequence of different stainless steels, J. Mater. Res. Technol., 2023, 25: 1030–1040. doi:10.1016/j.jmrt.2023.06.017 Cong Jiang et al.
- [13] Li, K., Li, D., Liu, D., Pei, G., Sun, L., Microstructure evolution and mechanical properties of multiplelayer laser cladding coating of 308L stainless steel, Appl. Surf. Sci., 2015, 340: 143–150. doi: 10.1016/j.apsusc.2015.02.171
- [14] Köse, C., Effect of heat input and post weld heat treatment on the texture, microstructure and mechanical properties of laser beam welded AISI 317L austenitic stainless steel, Mater. Sci. Eng.: A, 2022, 855: 143966. doi: 10.1016/j.msea.2022.143966
- [15] Yang, D., Huang, Y., Fan, J., Jin, M., Peng, Y., Wang, K., Effect of N2 content in shielding gas on formation quality and microstructure of high nitrogen austenitic stainless steel fabricated by wire and arc additive manufacturing, J. Manuf. Process., 2021, 61: 261–269. doi:10.1016/j.jmapro.2020.11.020
- [16] Bhadrakali, A.S., Sastry, D.V.A.R., Chigilipalli, B.K., Naik, K.S., Kakaravada, T.I., Acharya, A., et al., Effect of heat input on microstructure and mechanical properties of bimetallic wire arc additive manufacturing of SS304L and ER308L prepared by hybrid manufacturing process, Int. J. Interact. Des. Manuf. (IJIDeM), 2023, 19: 263–274. doi: 10.1007/s12008-023-01662-5
- [17] García-García, V., Reyes-Calderón, F., Frasco- García, O.D., Alcantar-Modragón, N., Mechanical behavior of austenitic stainless-steel welds with variable content of δ-ferrite in the heat-affected zone, Eng. Fail. Anal., 2022, 140: 1–19. doi: 10.1016/j.engfailanal.2022.106618
- [18] Hou, Y., Kadoi, K., Effect of Ti, Al, and Mg addition on microstructure evolution in weld metal of stainless steel solidified with F and FA modes and the tensile property, Mater. Sci. Eng.: A, 2024, 915: 147190. doi: 10.1016/j.msea.2024.147190
- [19] Quitzke, C., Schröder, C., Mandel, M., Krüger, L., Volkova, O., Wendler, M., Solidification of plasma TIG-welded N-alloyed austenitic CrMnNi stainless steel, Weld. World, 2022, 66(11): 2217–2229. doi: 10.1007/s40194-022-01353-x
- [20] Mahajan, A., Singh, H., Kumar, S., Kumar, S., Mechanical properties assessment of TIG welded SS 304 joints, Mater. Today: Proc., 2022, 56: 3073–3077. doi: 10.1016/j.matpr.2021.12.133
- [21] Wang, Y., Wang, Z., Wang, W., Ma, B., Effect of nitrogen content on mechanical properties of 316L (N) austenitic stainless steel, Mater. Sci. Eng.: A, 2023, 884: 145549. doi: 10.1016/j.msea.2023.145549
- [22] Bhyravajoshulu, S.D., Matcha, N.B., Ganesan, S., Vidyanathan, G., Moitra, A., A study on the effect of test temperatures on tensile and fracture behavior of SS 316LN, Mater. Perform. Charact., 2022, 11(1): 45–60. doi: 10.1520/MPC20210086
- [23] Molnár, D., Sun, X., Lu, S., Li, W., Engberg, G., Vitos, L., Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel, Mater. Sci. Eng.: A, 2019, 759: 490–497. doi:10.1016/j.msea.2019.05.079
- [24] Saluja, R., Moeed, K.M., Experimental investigation of solidification-mode and response surface modelling of ferrite-content in grade 304L Pulse GMA welded plates, Mater. Today: Proc., 2019, 18: 3876–3890. doi:10.1016/j.matpr.2019.07.327
- [25] DeNonno, O, Saville, A, Benzing, J, Klemm-Toole, J, Yu, Z., Solidification behavior and texture of 316L austenitic stainless steel by laser wire directed energy deposition, Mater. Charact., 2024, 211: 113916. doi: 10.1016/j.matchar.2024.113916
- [26] Li, C., Duan, C.H., Qi, Y.C., Sun, Y.F., Ma, C.Y., Effect of shielding gas on MIG welding performance with austenitic wire, Mater. Lett., 2023, 339: 134118. doi: 10.1016/j.matlet.2023.134118
- [27] Calmunger, M., Chai, G., Eriksson, R., Johansson, S., Moverare, J.J., Characterization of austenitic stainless steels deformed at elevated temperature, Metall. Mater. Trans. A-Phys Metall. Mater. Sci., 2017, 48A (10): 4525–4538. doi: 10.1007/s11661-017-4212-9
- [28] Zhong-Min, Y., Kai, W., Xiu, S., Guang-Jie, D., Grain boundary ferrite morphology and grain boundary crack in Nb/Timicroalloyed steel billets, Iron Steel., 2018, 53(11): 70–79. doi: 10.13228/j.boyuan.issn0449-749x.20180101
- [29] Li, Y., Luo, Y., Li, J., Song, D., Xu, B., Chen, X., Ferrite formation and its effect on deformation mechanism of wire arc additive manufactured 308 L stainless steel, J. Nucl. Mater., 2021, 550: 152933. doi:10.1016/j.jnucmat.2021.152933
- [30] Yang, J., Li, B., Zheng, Y., Chen, G., Chen, X., Low cycle fatigue behavior of additive manufactured 316LN stainless steel at 550°C: Effect of solution heat treatment, Int. J. Fatigue, 2024, 179: 108066. doi: 10.1016/j.ijfatigue.2023.108066
- [31] Yun, H.S., Koo, J.S., Lee, Y.K., Bong, B.U., Nahm, S.H., Effect of δ-ferrite in welded ER308 and ER316 microstructure on hydrogen embrittlement, Int. J. Hydrogen Energy, 2023, 48(50): 19297–19314. doi: 10.1016/j.ijhydene.2023.01.025
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9eeac43-7f39-4f1e-af35-d50b666d430e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.