Identyfikatory
Warianty tytułu
Analiza wpływu zużyciowego pękania łańcucha napędowego na wytężenie jego elementów
Języki publikacji
Abstrakty
Pin joints of chain transmissions are areas of stress concentration, which can lead to the formation of cracks in the links. This process often contributes to a critical weakening of the cross-section in the lugs of these links, which results in its damage and may lead to the failure of the entire drive. The article analyses the influence of exemplary wear damages of chain transmission elements on the magnitude of stress concentration. The impact of the load, crack size, and its location on the level of stress increase was assessed. The location of cracks in the lugs of chain plates transmission links which lead to the most significant increase in stress level was identified.
Połączenia sworzniowe przekładni łańcuchowych są miejscem koncentracji naprężeń, które mogą prowadzić do powstawania pęknięć w ogniwach. Proces ten często przyczynia się do krytycznego osłabienia przekroju w uchach tych ogniw, co skutkuje jego zniszczeniem i może prowadzić do niesprawności całego napędu. W artykule przeanalizowano wpływ przykładowych uszkodzeń zużyciowych elementów przekładni łańcuchowych na wielkość spiętrzenia naprężeń. Dokonano oceny wpływu wielkości obciążenia, wielkości pęknięcia oraz jego lokalizacji na poziom przyrostu naprężeń. Zidentyfikowano położenie pęknięć uch płytek gąsienicowych przekładni łańcuchowych, które prowadzą do największego spiętrzenia wytężenia.
Czasopismo
Rocznik
Tom
Strony
65--72
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Department of Fundamentals of Machine Design and Mechatronic Systems, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
Bibliografia
- 1. Ding S., Liu X.L., Zhang Y.B., Liu J.J., Zhu G.Y., Wang P.: A Novel Roller Chain Sleeve Crevice Identification and Orientation Device Design and Test. In Advanced Materials Research, 2012, Vols. 605–607, pp. 175–178, Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.605-607.17.
- 2. Meffert D., Oehler M., Sauer B.: Precise friction measurement in drive chains using a chain joint tribometer. Tribology Online 2021, 16(3), pp. 151–8, https://doi.org/10.2474/trol.16.151.
- 3. Simo Kamga L., Meffert D., Magyar B., Oehler M., Sauer B.: Simulative investigation of the influence of surface texturing on the elastohydrodynamic lubrication in chain joints, 2022, Tribology International, 171, art. no. 107564.
- 4. Gavrila C.C., Lates M.T., 2019 IOP Conf. Ser.: Mater. Sci. Eng. 591 01209.
- 5. Krishnasamy K., Selvakumar A.A.: Metallurgical failure analysis and improved core hardness to enhance crushing strength, Wear Resistance and Fatigue Strength of Chain Bush, 2020, vol. 20, pp. 967–975.
- 6. Sokolski P.: On wear processes in pin joints in caterpillars of large-size working machines. In: Fuis V. (ed.), [w:] Engineering Mechanics 2017: 23rd international conference: book of full texts, May 15–18, 2017, Svratka, Czech Republic, Brno University of Technology, Brno, cop. 2017, pp. 910–913.
- 7. Sokolski P.: Method of reliability assessment of pin joints in undercarriages of open-pit mining machinery – a case study, in: Risk, reliability and safety: innovating theory and practice: proceedings of the 26th EuropeanSafety and Reliability Conference, ESREL 2016, Glasgow, Scotland, 25–29 September 2016, CRCPress/Balkema, pp. 2472–2477.
- 8. Lee P.M., Priest M.: An innovation integrated approach to testing motorcycle drive chain lubricants, Elsevier Science, 2004.
- 9. Krawczyk J., Pawlowski B.: The Analysis of the Tribological Properties of the Armoured Face Conveyor Chain Race, Arch. Min. Sci., 2013, 58, pp. 1251–1262.
- 10. Ren W.J., Wang L., Mao Q.H., Jiang S.B., Huang S.: Coupling properties of chain drive system under various and eccentric loads. Int. J. Simul. Model. 2020, 19, pp. 643–654.
- 11. Jiang S., Huang S., Mao Q., Zeng Q., Gao K., Lv J.: Dynamic Properties of Chain Drive in a Scraper Conveyor under Various Working Conditions, Machines 2022, 10, 579, https://doi.org/10.3390/ machines10070579.
- 12. Becker A., Meffert D.H., Sauer B.: Friction and wear investigations on single chain joints. Forschung im Ingenieurwesen, 2019, 83, pp. 53–63.
- 13. Zhao J.T., Wang S.Z., Wang Z.X.: The Effects of the Wear Elongation on the Load of a Long-Distance Transmission Chain. In Applied Mechanics and Materials, 2013, Vol. 456, pp. 60–64, Trans Tech Publications, Ltd., https://doi.org/10.4028/www.scientific.net/amm.456.60.
- 14. Becker A., Meffert D., Sauer B.: Friction and wear investigations on single chain joints. Forsch Ingenieurwes, 2019, 83, pp. 53–63, https://doi.org/10.1007/s10010-019-00297-x.
- 15. Tandler R., Bohn N., Gabbert U., Woschke E.: Analytical wear model and its application for the wear simulation in automotive bush chain drive systems, Wear 2020, pp. 446–447:203193. https://doi.org/10.1016/j.wear.2020.203193.
- 16. Tandler R., Bohn N., Gabbert U., Woschke E.: Experimental investigations of the internal friction in automotive bush chain drive systems, Tribol Int, 2019, 140:105871, https://doi.org/10.1016/j.triboint.2019.105871.
- 17. Srivastava N., Haque I.: Clearance and Friction-Induced Dynamics of Chain CVT Drives, Multibody System Dynamics, 2008, 19, pp. 255–280.
- 18. Dolipski M., Remiorz E., Sobota P.: Determination of dynamic loads of sprocket drum teeth and seats by means of a mathematical model of the longwall conveyor. Arch. Min. Sci., 2012, 57, pp. 1101–1119.
- 19. Dolipski M., Cheluszka P., Remiorz E., Sobota P.: Follow-up chain tension in an armoured face conveyor/nadążne napinanie łańcucha zgrzebłowego w przenośniku ścianowym, Archives of Mining Sciences, 2015, vol. 60, no. 1, pp. 25–38.
- 20. Palazzetti R., Yan X.-T.: Study on Lubrication Effect on Motorbike Chain Transmissions, Ind Lubrication and Tribology, 2016, 68, 5, pp. 561–568.
- 21. Shoji N., Hideaki Y., Satoshi N., Tohru K.: Evaluation of Wear between Pin and Bush in Roller Chain, J. Adv. Mech. Des. Syst. Manuf., 2009, 3, pp. 355–365, doi:10.1299/jamdsm.3.355.
- 22. Idapalapati S., Akisanya A.R., Loh K.K., Yeo S.: Failure analysis of a failed anchor chain link, Eng. Fail. Anal., 2018, 89, pp. 258–270.
- 23. Saito R., Noda N-Aki, Sano Y., Song J., Minami T., Birou Y., Miyagi A., Huang Y.: Fatigue strength analysis and fatigue damage evaluation of roller chain, Metals, 2018, 8(10), pp. 1–15.
Uwagi
Na publikacji błędny ORCID autora Piotr Sokolski.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9eaed5a-4e36-4801-ac86-d14dd942bf7a