PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sewage sludge as barrier material for heavy metals in waste landfill

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metal pollutants in the leachate of waste landfill are a potential threat to the environment. In this study, the feasibility of using municipal sewage sludge as barrier material for the containment of heavy metal pollutants from solid waste landfills was evaluated by compaction test and hydraulic conductivity test concerning compaction property, impermeability and heavy metal retardation. Results of the compaction test showed that the maximum dry density of 0.79 g·cm−3 was achieved at the optimum water content of about 60%. The hydraulic conductivities of compacted sewage sludge permeated with synthetic heavy metal solutions were in the range of 1.3×10−8 – 6.2×10−9 cm·s−1, less than 1.0 ×10−−7cm·s−1 recommended by regulations for barrier materials. Chemical analyses on the effluent from the hydraulic conductivity tests indicated that the two target heavy metals, Zn and Cd in the permeants were all retarded by compacted sewage sludge, which might be attributed to the precipitation and adsorption of heavy metal ions. The results of this study suggest that specially prepared material from sewage sludge could be used as a barrier for waste landfills for its low permeability and strong retardation to heavy metal pollutants.
Rocznik
Strony
52--58
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University), Ministry of Education, China
autor
  • Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University), Ministry of Education, China
autor
  • Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University), Ministry of Education, China
autor
  • Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University), Ministry of Education, China
Bibliografia
  • [1]. Baun, D.L. & Christensen, T.H. (2004). Speciation of heavy metals in landfill leachate: a review, Waste management & research, 22, 1, pp. 3–23.
  • [2]. Ciesielczuk, T., Rosik-Dulewska, C. & Kochanowska, K. (2014). The influence of biomass ash on the migration of heavy metals in the flooded soil profile-model experiment. Archives of Environmental Protection, 40, 4. pp. 3–15.
  • [3]. Cokca, E. & Yilmaz, Z. (2004). Use of rubber and bentonite added fly ash as a liner material. Waste management, 24, 2, pp. 153–164.
  • [4]. Duruibe, J.O., Ogwuegbu, M.O.C. & Egwurugwu, J.N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2, 5, pp. 112–118.
  • [5]. Francisca, F.M. & Glatstein, D.A. (2010). Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Applied Clay Science, 49, 3, pp. 187–193.
  • [6]. Griffin, R.A. & Jurinak, J.J. (1973). Test of a new model for the kinetics of adsorption-desorption processes. Soil Science Society of America Journal, 37, 6, pp. 869–872.
  • [7]. Hunter, R.J. (1993). Introduction to modern colloid science, Oxford University Press, Oxford 1993.
  • [8]. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 1, pp. 167–182.
  • [9]. Jonczak, J. & Parzych, A. (2014). The content of heavy metals in the soil and litterfall an a beech-pine-spruce stand in northern Poland. Archives of Environmental Protection, 40, 4, pp. 67–77.
  • [10]. Jung, C.H., Matsuto, T., Tanaka, N. & Okada, T. (2004). Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Management, 24, 4, pp. 381–391.
  • [11]. Kalisz, B., Lachacz, A., Glazewski, R. & Klasa, A. (2012). Effect of Municipal Sewage Sludge under Salix Plantations on Dissolved Soil Organic Carbon Pools. Archives of Environmental Protection, 38, 4, pp. 87–97.
  • [12]. Kamon, M., Zhang, H. & Katsumi, T. (2002). Redox effects on heavy metal attenuation in landfill clay liner. Soils and Foundations, 42, 3, pp. 115–126.
  • [13]. Kashir, M. & Yanful, E.K. (2001). Hydraulic conductivity of bentonite permeated with acid mine drainage. Canadian Geotechnical Journal, 38, 5, pp. 1034–1048.
  • [14]. Konen, M.E., Jacobs, P.M., Burras, C.L., Talaga, B.J. & Mason, J.A. (2002). Equations for predicting soil organic carbon using loss-on-ignition for north central US soils. Soil Science Society of America Journal, 66, 6, pp. 1878–1881.
  • [15]. Lemanowicz, J. & Bartkowiak, A. (2013). Diagnosis of the content of selected heavy metals in the soils of the Pałuki region against their enzymatic activity. Archives of Environmental Protection, 39, 3, pp. 23–32.
  • [16]. Lister, S.K. & Line, M.A. (2001). Potential utilisation of sewage sludge and paper mill waste for biosorption of metals from polluted waterways. Bioresource Technology, 79, 1, pp. 35–39.
  • [17]. Lottermoser, B. (2010). Mine wastes: characterization, treatment and environmental impacts, Springer Science & Business Media, Berlin 2010.
  • [18]. Manassero, M., Benson, C.H. & Bouazza, A. (2000). Solid waste containment systems, in: ISRM International Symposium, International Society for Rock Mechanics(Eds.). The Chemical Rubber Company Press, Boca Raton 2000.
  • [19]. Mitchell, J.K. (1993). Fundamentals of soil behavior, Wiley, New York 1993.
  • [20]. Mohan, S. & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169, 1, pp. 351–359.
  • [21]. O’Kelly, B.C. (2005). Consolidation properties of a dewatered municipal sewage sludge. Canadian Geotechnical Journal, 42, 5, pp. 1350–1358.
  • [22]. O’Kelly, B.C. (2006). Geotechnical properties of municipal sewage sludge. Geotechnical & Geological Engineering, 24, 4, pp. 833–850.
  • [23]. Rozada, F., Otero, M., Morán, A. & García, A. I. (2008). Adsorption of heavy metals onto sewage sludge-derived materials. Bioresource Technology, 99, 14, pp. 6332–6338.
  • [24]. Solari, P., Zouboulis, A.I., Matis, K.A. & Stalidis, G.A. (1996). Removal of toxic metals by biosorption onto nonliving sewage sludge. Separation science and technology, 31, 8, pp. 1075–1092.
  • [25]. Sridharan, A., Rajasekhar, C. & Pandian, N. S. (2001). Heavy metal retention behavior of clayey soils. Journal of testing and evaluation, 29, 4, pp. 361–371.
  • [26]. Stone, R.J., Ekwue, E.I. & Clarke, R.O. (1998). Engineering properties of sewage sludge in Trinidad. Journal of agricultural engineering research, 70, 2, pp. 221–230.
  • [27]. Wang, B., Zhang, H., Fan, Z. & Ju, Y. (2010). Compacted sewage sludge as a barrier for tailing impoundment. Environmental Earth Sciences, 61, 5, pp. 931–937.
  • [28]. Yeheyis, M.B., Shang, J.Q. & Yanful, E.K. (2009). Feasibility of using coal fly ash for mine waste containment. Journal of environmental engineering, 136, 7, pp. 682–690.
  • [29]. Zhang, H., Wang, B., Dong, X., Fan, Z. & Ju, Y. (2010). Feasibility of sewage sludge used as filling material in permeable reactive barrier, Environmental Science, 31, 5, pp. 1280–1286. (in Chinese)
  • [30]. Zhang, H., Zhang, Q., Yang, B. & Wang, J. (2014). Compacted sewage sludge as a barrier for tailings: the heavy metal speciation and total organic carbon content in the compacted sludge specimen, PLoS ONE, 9, 6, e100932. doi. 10.1371/journal.pone.0100932.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9e8911e-e2b1-44cb-9ba8-29a5df25f5f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.