PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A contribution on real and complex convexity in several complex variables

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let f, g : Cn → C be holomorphic functions. Define u(z, w) = |w − f (z)|4 + |w − g(z)|4, v(z, w) = |w − f (z)|2 + |w − g(z)|2, for (z, w) ∈ Cn × C. A comparison between the convexity of u and v is obtained under suitable conditions. Now consider four holomorphic functions φ1, φ2 : Cm → C and g1, g2 : Cn → C. We prove that F = |φ1 − g1|2 + |φ2 − g2|2 is strictly convex on Cn × Cm if and only if n = m = 1 and φ1, φ2, g1, g2 are affine functions with (φ′1g′2 − φ′2g′1)̸ = 0. Finally, it is shown that the product of four absolute values of pluriharmonic functions is plurisubharmonic if and only if the functions satisfy special conditions as well.
Rocznik
Tom
Strony
21--58
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Département de Mathématiques, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia
Bibliografia
  • [1] J. Abidi, Sur quelques problèmes concernant les fonctions holomorphes et plurisousharmoniques, Rend. Circ. Mat. Palermo 51 (2002) 411-424.
  • [2] J. Abidi, Contribution à l’étude des fonctions plurisousharmoniques convexes et analytiques, Serdica Math. J. 40 (2014) 329-388.
  • [3] J. Abidi, The real and complex convexity, J. Math. Appl. 41 (2018) 123-156.
  • [4] J. Abidi, On convex and analytic functions, An. Univ. Oradea Fasc. Mat. XXVI (2019) 107-128.
  • [5] M. Andersson, M. Passare, R. Sigurdsson, Complex Convexity and Analytic Functionals, Progress in Mathematics, Vol. 225, Birkhäuser, Berlin, 2004.
  • [6] H.J. Bremermann, Complex convexity, Trans. Amer. Math. Soc. 82 (1956) 17-51.
  • [7] U. Cegrell, Removable singularities for plurisubharmonic functions and related problems, Proc. Lond. Math. Soc. 36 (1978) 310-336.
  • [8] H. El Mir, Sur le prolongement des courants positifs fermés, Acta Math. 153 (1984) 1-45.
  • [9] G.M. Henkin, J. Leiterer, Theory of Functions on Complex Manifolds, Birkhäuser, Boston, Mass., 1984.
  • [10] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Third Edition (revised), Mathematical Library, Vol. 7, North Holland, Amsterdam-New York-Oxford-Tokyo, 1990.
  • [11] L. Hörmander, L., Notions of Convexity, Birkhäuser, Basel-Boston-Berlin, 1994.
  • [12] M. Jarnicki, P. Pflug, Extension of Holomorphic Functions, de Gruyter, Berlin, 2000.
  • [13] M. Klimek, Pluripotential Theory, Clarendon Press, Oxford, 1991.
  • [14] S.G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982.
  • [15] P. Lelong, Définition des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942) 398-400.
  • [16] P. Lelong, Sur les suites des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942) 454-456.
  • [17] P. Lelong, Les fonctions plurisousharmoniques, Ann. Sci. Ecole Norm. Sup. 62 (1945) 301-338.
  • [18] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
  • [19] V.S. Vladimirov, Les Fonctions de Plusieurs Variables Complexes (et Leur Application a la Théorie Quantique des Champs), Paris: Dunod, 1967.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9e791cf-8f8e-41f2-899c-8dbe7026b487
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.